
67

Synthesizing Fine-Grained Synchronization Protocols for
Implicit Monitors
KOSTAS FERLES

∗
, The University of Texas at Austin, USA

BENJAMIN SEPANSKI*, The University of Texas at Austin, USA
RAHUL KRISHNAN, The University of Texas at Austin, USA
JAMES BORNHOLT, The University of Texas at Austin, USA
ISIL DILLIG, The University of Texas at Austin, USA

A monitor is a widely-used concurrent programming abstraction that encapsulates all shared state between
threads. Monitors can be classified as being either implicit or explicit depending on the primitives they provide.
Implicit monitors are much easier to program but typically not as efficient. To address this gap, there has been
recent research on automatically synthesizing explicit-signal monitors from an implicit specification, but prior
work does not exploit all paralellization opportunities due to the use of a single lock for the entire monitor.
This paper presents a new technique for synthesizing fine-grained explicit-synchronization protocols from
implicit monitors. Our method is based on two key innovations: First, we present a new static analysis for
inferring safe interleavings that allow violating mutual exclusion of monitor operations without changing its
semantics. Second, we use the results of this static analysis to generate a MaxSAT instance whose models
correspond to correct-by-construction synchronization protocols. We have implemented our approach in a
tool called Cortado and evaluate it on monitors that contain parallelization opportunities. Our evaluation
shows that Cortado can synthesize synchronization policies that are competitive with, or even better than,
expert-written ones on these benchmarks.

CCS Concepts: • Software and its engineering→ Concurrent programming structures; Concurrent
programming languages.

Additional Key Words and Phrases: implicit signal monitors, fine-grained locking, concurrent programming,
symbolic reasoning, verification conditions, monitor invariant

ACM Reference Format:
Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig. 2022. Synthesizing Fine-
Grained Synchronization Protocols for Implicit Monitors . Proc. ACM Program. Lang. 6, OOPSLA1, Article 67
(April 2022), 26 pages. https://doi.org/10.1145/3527311

1 INTRODUCTION
Concurrent programming is difficult because it requires developers to consider interactions between
multiple threads of execution and mediate access to shared resources and data. Programming
languages can offer higher-level abstractions to reduce this complexity by making concurrent
∗Both authors contributed equally to the paper.

Authors’ addresses: Kostas Ferles, Computer Science Department, The University of Texas at Austin, USA, kferles@cs.utexas.
edu; Benjamin Sepanski, Computer Science Department, The University of Texas at Austin, USA, ben_sepanski@utexas.edu;
Rahul Krishnan, Computer Science Department, The University of Texas at Austin, USA, rahulk@cs.utexas.edu; James
Bornholt, Computer Science Department, The University of Texas at Austin, USA, bornholt@cs.utexas.edu; Isil Dillig,
Computer Science Department, The University of Texas at Austin, USA, isil@cs.utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/4-ART67
https://doi.org/10.1145/3527311

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

HTTPS://ORCID.ORG/0000-0002-8370-5465
HTTPS://ORCID.ORG/0000-0002-4924-3009
HTTPS://ORCID.ORG/0000-0003-0230-5185
HTTPS://ORCID.ORG/0000-0002-3258-3226
HTTPS://ORCID.ORG/0000-0001-8006-1230
https://doi.org/10.1145/3527311
https://orcid.org/0000-0002-8370-5465
https://orcid.org/0000-0002-4924-3009
https://orcid.org/0000-0003-0230-5185
https://orcid.org/0000-0002-3258-3226
https://orcid.org/0000-0002-3258-3226
https://orcid.org/0000-0001-8006-1230
https://doi.org/10.1145/3527311

67:2 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

programming more declarative. One such abstraction is the monitor [Hansen 1973; Hoare 1974],
which is an object that encapsulates shared state and allows threads access to it only through a set
of operations, between which the monitor enforces mutual exclusion.

Ideally, developers would implement monitors using implicit synchronization, wherein the only
synchronization primitive is a waituntil(P) operation that blocks threads until condition P is satis-
fied. The compiler or runtime can then automatically generate the necessary explicit synchronization
operations (locks, condition variables, etc.) to implement the monitor in a way that respects the
semantics of the implicit monitor. However, automatically deriving an efficient explicit monitor
from its implicit specification is a challenging problem, and there have been several recent research
efforts, including both run-time techniques like AutoSynch [Hung and Garg 2013] and compile-time
tools like Expresso [Ferles et al. 2018], to support implicit-synchronization monitors.

While these state-of-the-art approaches make it possible to program using implicit monitors, they
still achieve sub-optimal performance because they adhere closely to the monitor’s mutual exclusion
requirement. They generally use a single lock for the entire monitor and allow access by at most

one thread at a time across all monitor operations. In practice, however, many monitors can admit
additional concurrency while still preserving the appearance of mutual exclusion. For example,
consider a FIFO queue monitor that provides take and put operations. These two operations can
safely run concurrently unless the queue is empty or full, as they will not access the same slot in
the queue. Today, realizing this fine-grained concurrency requires expert developers to fall back
to hand-written explicit synchronization. These implementations are subtle and error-prone, and
there is no easy way for developers to determine when they have extracted the maximum possible
concurrency from such an implementation.
This paper presents a new technique which automatically synthesizes fine-grained explicit-

synchronization monitors. Our technique takes as input an implicit monitor that specifies the
desired operations and automatically generates an implementation that allows as much concurrency
as possible between those operations while still preserving the appearance of mutual exclusion.
The key idea is to decompose each monitor operation into a set of fragments and allocate a set
of locks to each fragment to enforce the mutual exclusion requirement while allowing as many
fragments as possible to run concurrently. The resulting implementation selectively acquires and
releases locks at fragment boundaries within each operation and signals condition variables as
needed.
At a high level, our approach operates in three phases to generate a high-performance explicit

synchronization monitor from its implicit version:

• Signal placement: First, we use an off-the-shelf technique [Ferles et al. 2018] to infer a signaling
regime which determines where to insert signaling operations on condition variables. While the
output of this tool is sufficient to synthesize a single-lock implementation, it does not admit any
additional concurrency wherein different threads can performmonitor operations simultaneously.
• Static analysis: Second, we perform static analysis to infer sufficient conditions for correctness.
That is, the output of the static analysis is a set of conditions such that if the synthesized monitor
obeys them, it is guaranteed to be correct-by-construction. A key challenge for this static analysis
is to determine which fragments can safely execute concurrently without creating a potential
violation of the monitor semantics. The analysis simulates interleaving each fragment between
the fragments of other operations and determines which possible interleavings are safe.
• Synchronization protocol synthesis via MaxSAT: Finally, we reduce the synthesis problem
to a maximum satisfiability (MaxSAT) instance from whose solution an explicit sychronization
protocol can be extracted. The hard constraints in the MaxSAT problem enforce the correctness
requirements extracted by the static analysis, while the soft constraints encode two competing

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:3

objective functions: minimizing the total number of locks used, while maximizing the number of
pairs of fragments that can run concurrently.
We have implemented our proposed approach in a tool called Cortado that operates on Java

monitors and evaluated it on a collection of monitor implementations that are (1) drawn from
popular open-source projects and (2) contain parallelization opportunities that can be achieved
via fine-grained locking. Given only the implicit monitor as input, Cortado synthesizes explicit-
synchronization monitors that perform as well as, or better than, hand-written explicit imple-
mentations by expert developers. Compared to state-of-the-art automated tools for synthesizing
explicit monitors [Ferles et al. 2018], Cortado-synthesized monitors extract more concurrency
and therefore perform much better (up to 39.1×) on heavily contended workloads.

In summary, this paper makes four main contributions:
• A new technique for automatically synthesizing fine-grained monitor implementations that
admit the maximum possible concurrency.
• A novel static static analysis for inferring safe interleaving opportunities between threads.
• A MaxSAT encoding to automate reasoning about both the correctness and performance of the
synthesized explicit-synchronization monitor.
• An implementation of our technique, Cortado, that outperforms both state-of-the-art automated
tools and expert-written code on benchmarks that can be parallelized via fine-grained locking.

2 OVERVIEW
In this section, we give an overview of our approach through a motivating example. Given the
implicit-synchronization monitor shown in Figure 1a, our goal is to automatically synthesize an
efficient and semantically equivalent explicit-synchronization monitor like the one presented in
Figure 1b. In what follows, we walk through this example and describe how our technique is able
to automatically generate the code in Figure 1b.

2.1 Implicit-Synchronization Monitor
Our technique takes as input an implicit-synchronization monitor that specifies which operations
should execute atomically and when certain operations are allowed to proceed but does not fix
a specific synchronization protocol for realizing that behavior. For example, Figure 1a shows an
implicit monitor that implements a limited capacity blocking queue via a bounded circular array
buffer. This monitor defines two operations, put and take, that execute atomically (i.e., the body of
each method must appear to execute as one indivisible unit). The put operation adds an object if the
queue is not full, and take removes an object if the queue is not empty. If one of these method calls
cannot proceed (i.e., queue is full or empty), the monitor blocks the calling thread’s execution using
a waituntil statement until the operation can be executed. For example, the waituntil statement
at line 13 in take blocks execution until there is at least one object in the queue.
As Figure 1a illustrates, implicit-synchronization monitors make concurrent programming

simpler because they are declarative: they merely state which operations are atomic and when
operations can proceed, but they do not specify a particular synchronization protocol for realizing
that desired behavior. However, most programming languages do not offer implicit synchronization
facilities; so, concurrent programs must instead be implemented in terms of explicit synchronization
constructs such as locks and condition variables, as we discuss next.

2.2 Explicit-Synchronization Monitor
Figure 1b shows an explicit-synchronization implementation of the bounded queue from Figure 1a
that is written by an expert. This implementation uses two distinct locks, putLock and takeLock,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:4 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

1 class ArrayBlockingQueue {
2 int first = 0, last = 0, count = 0;
3 Object[] queue;
4
5 ArrayBlockingQueue(int capacity) {
6 if (capacity < 1)
7 throw new IllegalArgumentException();
8 this.queue = new Object[capacity];
9 }
10
11 void put(Object o) {
12 // Fragment 1
13 waituntil(count < queue.length);
14 // Fragment 2
15 queue[last] = o;
16 // Fragment 3
17 last = (last + 1) %
18 // Fragment 4
19 count++;
20 }
21
22 Object take() {
23 // Fragment 5
24 waituntil(count > 0);
25 // Fragment 6
26 Object r = queue[first];
27 queue[first] = null;
28 // Fragment 7
29 first = (first + 1) %
30 // Fragment 8
31 count--;
32 return r;
33 }
34 }

(a) Implicit-synchronization ArrayBlockingQueue.

1 class ArrayBlockingQueue {
2 int first = 0, last = 0; Object[] queue;
3 AtomicInteger count = new AtomicInteger(0);
4
5 Lock putLock = new Lock(), takeLock = new Lock();
6 Condition notFull = putLock.newCondition();
7 Condition notEmpty = takeLock.newCondition();
8 // Constructor is the same as the implicit version.
9
10 void put(Object o) {
11 putLock.lock()
12 while (count.get() == queue.length)
13 notFull.await();
14 queue[last] = o;
15 last = (last + 1) %
16 int c = count.getAndIncrement();
17 putLock.unlock();
18 if (c == 0) {
19 takeLock.lock();
20 notEmpty.signalAll();
21 takeLock.unlock();}}
22
23 Object take() {
24 takeLock.lock();
25 while (count.get() == 0)
26 notEmpty.await();
27 Object r = queue[first];
28 queue[first] = null;
29 first = (first + 1) %
30 int c = count.getAndDecrement();
31 takeLock.unlock();
32 if (c == queue.length) {
33 putLock.lock();
34 notFull.signalAll();
35 putLock.unlock();}
36 return r;}}

(b) Explicit-synchronization ArrayBlockingQueue.

Fig. 1. Motivating example.

to protect the put and take methods respectively. The explicit-synchronization monitor also uses
an atomic integer for the count field, transforming reads into get() calls (e.g., line 12) and writes
into the appropriate atomic method (e.g., count.getAndIncrement() on line 16). The expert-written
monitor performs explicit signaling via condition variables notFull and notEmpty that are associated
with putLock and takeLock respectively. When a thread cannot execute one of these operations, it
calls await on the appropriate condition variable to block its execution (lines 13 and 26). A thread
blocked in put can only be unblocked by a corresponding take that frees up space in the queue. To
do so, the take must acquire putLock and perform a signal operation on condition variable notFull

(lines 33–35). The logic for take is symmetric (lines 19–21).
Although the expert-written version has more locks than a single global-lock implementation, its

performance will often be better: Introducing two locks allows put and take to execute concurrently,
although multiple concurrent puts are still serialized, as are multiple takes. A single global lock
would admit no concurrency in this case and would still incur the same synchronization overhead
of acquiring and releasing a lock on every method call. The expert implementation mitigates the
overhead of having two locks by acquiring locks selectively: take only acquires the putLock if
it is possible for there to be a put operation currently blocked waiting for space in the queue,
which happens only if the queue was full when take ran (the put/takeLock case is symmetric). This
example demonstrates the intricacy of synthesizing fine-grained locking protocols: instead of only
minimizing the total number of locks, we must also try to maximize the available concurrency.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:5

2.3 Our Approach
Our tool Cortado automatically synthesizes the efficient explicit-synchronization monitor in
Figure 1b given the implicit version from Figure 1a. It does so in three phases: First, it infers when
and how signaling operations should take place. Second, it performs static analysis to infer sufficient
conditions for the synthesized monitor to be correct. Third, it encodes the synchronization protocol
synthesis problem as a MaxSAT instance and uses a model of the MaxSAT problem to generate an
explicit-sychronization monitor. Since prior work can already handle the first phase, we only focus
on the the latter two phases in the following discussion.

Granularity. The granularity of our synthesized locking protocol is at the level of code fragments,
where each fragment is a single-entry region of code within a single method. For example, the
fragments chosen for the blocking queue example are indicated by comments in Figure 1a. Fragments
are the indivisible unit of concurrency in our approach: we aim tomaximize the number of fragments
that can run concurrently, but we do not modify the code within a fragment to introduce extra
concurrency (e.g., by removing data races). Hence, the explicit monitor synthesized by our approach
acquires and releases locks only at fragment boundaries.

Static Analysis. To ensure correctness of the synthesized monitor, our technique needs to
enforce the following three key requirements:
(1) Data-race freedom: Fragments that involve a data race must not be able to run concurrently.
(2) Deadlock freedom: Locks must be acquired and released in an order that prevents deadlocks.
(3) Atomicity: Each monitor operation should appear to take place as one indivisible unit. That is,

even though the implementation can allow thread interleavings inside monitor operations, the
resulting state should be equivalent to one where each method executes truly atomically.
Here, the second requirement (i.e., deadlock freedom) does not necessitate any static analysis, as

we can prevent deadlocks by imposing a static total order ⪯ on locks [Birrell 1989] and ensuring
that locks are acquired and released in a manner that is consistent with ⪯. However, in order to
ensure data-race freedom and atomicity, we need to perform static analysis of the source code
to identify (1) code fragments that have a data race, and (2) interleaving opportunities between
code fragments. Since detection of data races is a well-studied problem, the novelty of our static
analysis lies in identifying safe interleaving opportunities. Hence, the key question addressed by
our analysis is the following: Given a code fragment 𝑓 executed by thread 𝑡 , and two consecutive
code fragments 𝑓1, 𝑓2 executed by a different thread 𝑡 ′, is it safe to interleave the execution of 𝑓 in

between 𝑓1 and 𝑓2 while ensuring that monitor operations appear to take place atomically?
To answer this question, our method performs a novel static analysis to identify a set of such safe

interleavings. For instance, going back to the running example, our analysis determines that it is safe
to interleave the execution of fragment 4 in Figure 1a in between fragments 5 and 6 by checking a
number of commutativity relations between code fragments. In this instance, since our analysis
proves that fragment 4 left-commutes [Lipton 1975] with fragment 5 and right-commutes [Lipton
1975] with 6 and all of its successors, we identify this as a safe interleaving opportunity. On the
other hand, our analysis concludes that interleaving fragment 4 in between 1 and 2 is not safe
because fragment 4 does not left-commute with fragment 1 — intuitively, this is because fragment 4
can falsify predicate count < queue.length that appears in the waituntil statement of fragment 1.

MaxSATOverview. Once we identify possible data races and safe interleavings via static analysis,
we use this information to generate a MaxSAT instance whose solution corresponds to a fine-
grained synchronization protocol. Specifically, our MaxSAT encoding uses a variable h𝑙 𝑗

𝑓𝑖
to indicate

that code fragment 𝑓𝑖 must hold lock 𝑙 𝑗 and generates both hard constraints (for correctness) and

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:6 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

soft constraints (for efficiency) over these variables. Thus, if the MaxSAT solver returns a model in
which variable h𝑙 𝑗

𝑓𝑖
is assigned to true, this means that the synthesized code must acquire lock 𝑙 𝑗

prior to executing fragment 𝑓𝑖 . Similarly, our MaxSAT encoding introduces a variable 𝑎fld indicating
that field fld should be implemented using an atomic type.

The hard constraints in our MaxSAT encoding correspond to the three correctness requirement
mentioned earlier, namely (1) data race prevention, (2) deadlock freedom, and (3) atomicity. On the
other hand, soft constraints encode our optimization objective. In what follows, we give a brief
overview of the different types of constraints in our encoding, focusing only on constraints that
involve lock acquisition variables h𝑙 𝑗

𝑓𝑖
. However, it is worth noting that our technique also generates

constraints on atomic variables 𝑎fld and can automatically convert fields to atomic types whenever
doing so is safe and more efficient than introducing a lock.

Data-Race Freedom. Given a pair of code fragments (𝑓𝑖 , 𝑓𝑗) that have a potential data race
according to the static analysis, our MaxSAT encoding introduces hard constraints of the form∨

𝑘 (h𝑙𝑘𝑓𝑖 ∧ h
𝑙𝑘
𝑓𝑗
) stating that 𝑓𝑖 and 𝑓𝑗 must share at least one common lock. For example, in Figure 1a,

our analysis determines that fragments 4 and 8 cannot run in parallel since they both write to the
same memory location count. Thus, the MaxSAT instance contains boolean constraints to make
sure that two different threads cannot execute count-- and count++ at the same time.

Deadlock freedom. Our approach precludes deadlocks by imposing a total order ⪯ on locks. In
particular, it enforces that a thread 𝑡 can only acquire lock 𝑙 if 𝑡 does not already hold any lock 𝑙 ′
where 𝑙 ′ ≺ 𝑙 . For example, in Figure 1a, suppose the locking protocol determines that fragments 1
and 2 must hold all locks in sets 𝐿1 and 𝐿2 respectively. Between executing the two fragments, the
code will need to acquire all locks in 𝐿2 \ 𝐿1. Hence, we add constraints 𝑖 < 𝑗 for every pair of locks
𝑙 𝑗 ∈ 𝐿2 \ 𝐿1 and 𝑙𝑖 ∈ 𝐿1 ∩ 𝐿2 so that those locks can be acquired while respecting the order ⪯.

Atomicity. Our MaxSAT encoding also includes constraints to ensure that monitor operations
appear to execute atomically. Suppose that our static analysis determines that a thread cannot
safely execute code fragment 𝑓 in between some other thread’s execution of code fragments 𝑓1
and 𝑓2. To prevent such an unsafe interleaving, we add hard constraints to ensure that fragments
𝑓 , 𝑓1, and 𝑓2 all share at least one common lock. For example, since our analysis determines that
fragment 4 (count++) cannot be interleaved with any other pair of fragments in the same method
put (running concurrently on a different thread), our MaxSAT encoding includes a hard constraint
asserting that fragment 4 must share a lock with all other fragments in the put method.

Soft Constraints. Because the efficiency of the synthesized code depends on both the allowed
parallelization opportunities as well as the number of locks, our optimization objective tries to
minimize the number of locks and maximize the number of fragments that can run in parallel. To
encode the latter objective, our MaxSAT encoding includes soft contraints asserting that any two
parallelizable fragments must not share a lock. On the other hand, to encode the former objective,
we add a soft constraint stating that no fragment in𝑚 is holding lock 𝑙 .

Monitor Generation. A solution of the generated MaxSAT instance determines (a) which
fragments should hold which locks, (b) which fields should be implemented using atomic types,
and (c) which locks should be associated with which condition variables. Thus, together with the
output of the signal placement technique [Ferles et al. 2018], a model of the MaxSAT problem
can be automatically translated into the target monitor implementation. For our running example,
Cortado synthesizes precisely the implementation in Figure 1b given the implicit monitor of
Figure 1a.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:7

Monitor M ::= monitor M {(fld | m)*}

Field fld ::= 𝜏 𝑓 := 𝑒

Method m ::= m(®𝑣){𝑐𝑐𝑟*}

CCR 𝑐𝑐𝑟 ::= waituntil(𝑝);s

Stmt 𝑠 ::= skip | 𝑣 := 𝑒 | 𝑣 .𝑓 := 𝑒

| v.m(®𝑒) | [if (𝑒)]? goto l

| ls1; ls2

LStmt 𝑙𝑠 ::= l:? s
(a) Implicit-synchronization monitor language.

Monitor M ::= monitor M {(fld | sync | m)*}

Field fld ::= 𝜏 𝑓 := 𝑒

Sync sync ::= Lock l := new Lock()

| CondVar cv := l.newCondVar()

| Atomic[𝜏] 𝑎 := 𝑒

Method m ::= m(®𝑣) { 𝑐𝑐𝑟* }

CCR 𝑐𝑐𝑟 ::= (ls)*

Stmt 𝑠 ::= skip | 𝑣 := 𝑒 | 𝑣 .𝑓 := 𝑒

| v.m(®𝑒) | [if (𝑣)]? goto l

| ls1; ls2
| 𝑎𝑝𝑟𝑒 := 𝑎.update(𝜆𝜒.𝑒)

LStmt 𝑙𝑠 ::= l:? s
(b) Explicit-synchronization monitor language.

Fig. 2. Source & target languages. We use 𝑒 and 𝑝 for expressions and predicates respectively.

3 PRELIMINARIES
In this section, we describe our source and target languages and define what it means for an explicit
synchronization monitor to correctly implement an implicit one.

3.1 Background on Monitors
In this work, we assume that all shared resources between threads are handled by a monitor class

𝑀 which consists of fields 𝐹 and set of operations (methods) 𝑂 . The fields 𝐹 constitute the only
shared state between threads, which can only access shared state by performing one of the monitor
operations 𝑜 ∈ 𝑂 . These operations can be performed by an arbitrary, yet fixed, number of threads,
and locations reachable through arguments are assumed to be thread-local. We represent each
thread by a unique identifier from set T ⊆ N, and we model memory locations using access paths

(AP) [Landi and Ryder 1992] of the form 𝜋 = 𝑣 (.𝑓)∗, consisting of a base variable 𝑣 optionally
followed by a finite sequence of field accesses. We also assume that a special this variable stores
the memory location of the monitor object.

Definition 3.1. (Monitor State). A monitor state 𝜎 : T × AP → N is a mapping from pairs (𝑡, 𝜋)
(where 𝑡 is a thread identifier and 𝜋 an access path) to a value.

3.2 Source Language
Our source language, presented in Figure 2a, corresponds to implicit synchronization monitors

without explicit locking or signaling. The body of each monitor operation consists of a sequence of
so-called Conditional Critical Regions (CCRs) [Hoare 1971], which in turn consist of a waituntil

statement followed by one or more regular non-blocking statements. We refer to the predicate of
the waituntil statement of a CCR as its guard and to the rest of the statements as its body. A thread
executes the body of the CCR atomically if its guard evaluates to true; otherwise it suspends its
execution and exits the monitor until the predicate becomes true. More formally, the semantics of
our source language are defined via the notion of an implicit monitor history:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:8 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

Definition 3.2. (Implicit monitor history). Given a set of threads interacting with each other
through monitor 𝑀𝑠 = (𝐹,𝑂), an implicit monitor history ℎ𝑖 is a sequence (𝑐𝑐𝑟1, 𝑡1) . . . (𝑐𝑟𝑟𝑛, 𝑡𝑛)
where each 𝑐𝑐𝑟𝑖 is a CCR of M𝑠 and 𝑡𝑖 is a thread identifier.

Given history ℎ𝑖 , we define an argument mapping 𝜈𝑖 to be a list whose 𝑖’th element maps formal
parameters of Method(𝑐𝑐𝑟𝑖) to their actual value for each event (𝑐𝑐𝑟𝑖 , 𝑡𝑖) in ℎ𝑖 .

Definition 3.3. (Implicit monitor semantics). Given a monitor𝑀𝑠 , initial state 𝜎 , and monitor
history ℎ𝑖 with argument mapping 𝜈𝑖 , the operational semantics of𝑀 is defined using a judgment
M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎) ⇓ 𝜎 ′ indicating that the new monitor state is 𝜎 ′ after executing ℎ𝑖 on state 𝜎 .

Because our source language is very similar to the one used in Ferles et al. [2018], we omit a
formal definition of the operational semantics. Following that work, we also consider an implicit
history to be valid only if it respects the program order of the input monitor.

3.3 Target Language
Figure 2b presents the language of explicit-synchronization monitors. The overall structure of
this target language is similar to the source language but with a few important differences. First,
an explicit monitor contains locks, conditional variables, and atomic fields, collectively referred
to as synchronization variables. Second, CCRs in the target language do not contain waituntil

statements; instead, the logic of a waituntil statement is implemented by calling methods on the
appropriate condition variable. We assume that synchronization variables support all the standard
synchronization operations present in modern concurrent languages (e.g., await, signal, signalAll,
etc.). Finally, our target language contains a special update statement for performing updates on
atomic fields: it takes as argument an atomic field 𝑎 and a unary function 𝑓 and updates the value of
𝑎 atomically as 𝑓 (𝑎). For instance, the statement c𝑝𝑟𝑒 := c.update(𝜆𝜒.𝜒 + 1) atomically increments
c by one and stores the value of c before the update in c𝑝𝑟𝑒 .

Definition 3.4. (Explicit monitor history). Given a set of threads executing in monitor𝑀𝑡 =

(𝐹,𝑂), an explicit monitor history ℎ𝑒 is a sequence (𝑠1, 𝑡1) . . . (𝑠𝑛, 𝑡𝑛) where each 𝑠𝑖 is a (non-
composite) statement of a monitor operation 𝑜 ∈ 𝑂 and 𝑡𝑖 is a thread identifier.

Leveraging the same notion of argument mappings defined in Section 3.2, we define explicit
monitor semantics as follows:

Definition 3.5. (Explicit monitor semantics). Given a monitor𝑀𝑡 , initial state 𝜎 , and monitor
history ℎ𝑒 with argument mapping 𝜈𝑒 , the operational semantics of𝑀𝑡 is defined using a judgment
𝑀𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎) ↓ 𝜎 ′ indicating that the new state is 𝜎 ′ after executing ℎ𝑒 on initial state 𝜎 .

The full operational semantics of our target language is given in the extended version of the
paper [Ferles et al. 2022].

3.4 Relating Implicit and Explicit Histories
In order to formalize the correctness of our approach, we need to relate an implicit history ℎ𝑖 of a

source monitor𝑀𝑠 with an explicit history ℎ𝑒 of its corresponding target version𝑀𝑡 . Because every
history of an implicit monitor M𝑠 induces a corresponding history of its explicit version M𝑡 , we
define an operation called that Expand that “translates" an implicit history to an explicit one. That
is, given an implicit history ℎ𝑖 with argument mapping 𝜈𝑖 and state 𝜎 , Expand

M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) returns a

pair (ℎ𝑒 , 𝜈𝑒), where ℎ𝑒 is a history of M𝑡 containing all statements executed by ℎ𝑖 under initial state
𝜎 and 𝜈𝑒 is the argument mapping for ℎ𝑒 .

Example 3.6. Consider the implicit monitor of Figure 3a and its explicit counterpart in Figure 3b.
For histories ℎ𝑖 and ℎ𝑒 from Figure 3c we have Expand

M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) = (ℎ𝑒 , 𝜈𝑒) for some 𝜈𝑖 , 𝜈𝑒 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:9

class M {
int x = 0, y = 0, z = 0;
void foo() { x++; y++; }
void bar() { z++; } }

(a) A simple implicit monitor.

class M {
int x = 0, y = 0, z = 0;
Lock l1 = new Lock(), l2 = new Lock();
void foo() { l1.lock(); x++; y++; l1.unlock(); }
void bar() { l2.lock(); z++; l2.unlock(); } }

(b) An explicit monitor implementation of Figure 3a.

ℎ𝑖 = (𝑓 𝑜𝑜, 𝑡1) (𝑏𝑎𝑟, 𝑡2)
ℎ𝑒 = (l1.lock(), 𝑡1) (x++, 𝑡1) (y++, 𝑡1) (l1.unlock(), 𝑡1) (l2.lock(), 𝑡2) (z++, 𝑡2) (l2.unlock(), 𝑡2)
ℎ′𝑒 = (l1.lock(), 𝑡1) (x++, 𝑡1) (l2.lock(), 𝑡2) (y++, 𝑡1) (z++, 𝑡2) (l1.unlock(), 𝑡1) (l2.unlock(), 𝑡2)

(c) Examples of implicit and explicit histories.

Fig. 3. A simple implicit monitor and its explicit implementation.

Using this Expand operation, we can classify explicit histories as being sequential or interleaved:

Definition 3.7. (Sequential history) Let M𝑡 be an explicit monitor implementation of M𝑠 . We
say that an explicit history ℎ𝑒 of monitor M𝑡 with argument mapping 𝜈𝑒 is sequential iff there exist
a history ℎ𝑖 of M𝑠 , argument mapping 𝜈𝑖 , and initial state 𝜎 such that Expand

M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) = (ℎ𝑒 , 𝜈𝑒).

In other words, a sequential history corresponds to an execution in which statements of the
explicit monitor are not interleaved between threads.

Example 3.8. Going back to Figure 3c, history ℎ𝑒 is sequential but ℎ′𝑒 is not.

Next, we introduce the notion of well-formed histories, which, intuitively, respect the program
order of the original implicit monitor:

Definition 3.9. (Well-formed history) Let Π(ℎ, 𝑡) be the projection of ℎ onto thread 𝑡 (i.e., it
filters out all elements of ℎ not involving thread 𝑡). We say that a history ℎ𝑒 of M𝑡 is well-formed iff,
for every thread 𝑡 , there exists sequential histories ℎ1𝑒 , . . . , ℎ𝑛𝑒 such that Π(ℎ𝑒 , 𝑡) = ℎ1𝑒 · · ·ℎ𝑛𝑒 .

Intuitively, well-formed histories respect program dependence in the original monitor for every
thread. By definition, every sequential history is also well-formed. In the remainder of this paper,
we implicitly mean well-formed explicit history whenever we refer to an explicit history.

Example 3.10. Histories ℎ𝑒 , ℎ′𝑒 from Figure 3c are both well-formed. However, the following
history is not well-formed because it does not respect program order: (l2.unlock(), 𝑡) (l2.lock(), 𝑡)

Definition 3.11. (Interleaved history)We say that a history ℎ𝑒 of M𝑡 is interleaved iff it is (1)
well-formed and (2) not sequential.

Example 3.12. History ℎ′𝑒 from Figure 3c is interleaved.

Next, we define what it means for an explicit history to simulate an implicit history.

Definition 3.13. (Simulation relation). Let𝑀𝑡 be an explicit version of implicit monitor𝑀𝑠 . We
say that an explicit history ℎ𝑒 of M𝑡 with argument mapping 𝜈𝑒 simulates (ℎ𝑖 , 𝜈𝑖) of M𝑠 on input 𝜎 ,
denoted (ℎ𝑒 , 𝜈𝑒) ∽ (ℎ𝑖 , 𝜈𝑖), if there exist sequential history ℎ′𝑒 and 𝜈 ′𝑒 such that:

(1) ∀𝑡 . Π(ℎ𝑒 , 𝑡) = Π(ℎ′𝑒 , 𝑡) and (2) Expand
M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) = (ℎ′𝑒 , 𝜈 ′𝑒).

In other words, ℎ𝑒 simulates a history of the original monitor if it is a (well-formed) permutation
of some sequential history ℎ′𝑒 of the explicit monitor M𝑡 .

Example 3.14. Going back to Figure 3c, we have (ℎ′𝑒 , 𝜈 ′) ∽ (ℎ𝑖 , 𝜈) for some 𝜈 , 𝜈 ′.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:10 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

3.5 Correctness of Explicit-Synchronization Monitors
Using the concepts introduced in the previous section, we now formalize what it means for an
explicit monitor to correctly implement an implicit one.

Definition 3.15. (State equivalence) Let 𝜎 be a program state of an implicit monitor M𝑠 and 𝜎 ′
that of an explicit monitor M𝑡 . We say that 𝜎 and 𝜎 ′ are equivalent modulo M𝑠 , denoted 𝜎 ≡M𝑠

𝜎 ′,
iff for all (𝑡, 𝜋) in the domain of 𝜎 , we have 𝜎 (𝑡, 𝜋) = 𝜎 ′(𝑡, 𝜋)

Intuitively, this notion of equivalence between two monitor states ignores any additional syn-
chronization fields and local variables introduced by translating M to an explicit-synchronization
monitor. Finally, we can define the correctness of an explicit monitor as follows:

Definition 3.16. (Correctness) We say that an explicit monitor 𝑀𝑡 correctly implements an
implicit monitor𝑀𝑠 , denoted as M𝑠 ∼ M𝑡 , iff for all input states 𝜎𝑠 , 𝜎𝑡 s.t. 𝜎𝑠 ≡M𝑠

𝜎𝑡 , we have:

(1) ∀ℎ𝑖 , 𝜈𝑖 . M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠) ⇓ 𝜎 ′𝑠 =⇒
(
M𝑡 ⊢ (ExpandM𝑡

(ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠), 𝜎𝑡) ↓ 𝜎 ′𝑡 ∧ 𝜎 ′𝑠 ≡M𝑠
𝜎 ′𝑡

)
(2) ∀ℎ𝑒 , 𝜈𝑒 . M𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎𝑡) ↓ 𝜎 ′𝑡 =⇒

(
∃ℎ𝑖 , 𝜈𝑖 . (ℎ𝑒 , 𝜈𝑒) ∽ (ℎ𝑖 , 𝜈𝑖) ∧M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠) ⇓ 𝜎 ′𝑠 ∧ 𝜎 ′𝑠 ≡M𝑠

𝜎 ′𝑡
)

The first correctness condition simply states thatM𝑡 does not eliminate any feasible behaviors of
M𝑠 . The second condition, on the other hand, states that every feasible history ofM𝑡 simulates some

implicit history that results in the same state. Intuitively, this means that all statement interleavings
allowed by M𝑡 provide the illusion that all operations of M𝑠 are executed atomically.

4 MAIN ALGORITHM
In this section, we present our main synthesis algorithm. Specifically, Section 4.1 introduces some
preliminary definitions and proves an NP-completeness result to justify the reduction to MaxSAT.
Then, Section 4.2 presents the high-level algorithm, Section 4.3 presents the static analysis for
inferring safe interleavings, and Sections 4.4 presents the details of the MaxSAT encoding.

4.1 Fragment Dependency Graphs and NP-Completeness
Our main synthesis algorithm is parametrized over a partitioning of the input monitor into code
fragments, where each code fragment defines a unit of computation that we need to assign locks
to. In this section, we clarify our assumptions about these code fragments and prove the NP-
completeness of the problem for a given choice of partition.

First, to define what we mean by a valid partition, we represent each method of the monitor as a
standard control-flow graph (CFG), where each atomic statement belongs to its own basic block.
Given a control-flow graph 𝐺 and node 𝑛, we write Preds(𝐺,𝑛) to indicate the predecessor nodes
of 𝑛 in 𝐺 and Succs(𝐺,𝑛) to indicate its successors. Then, a valid partition of a method into code
fragments is defined as follows:

Definition 4.1. (Partition) Let 𝐺 = (𝑉 , 𝐸) be the CFG representation of a method. Then, a
partition of this method is a set of CFGs {𝐺1, . . . ,𝐺𝑛} with 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) such that:
(1) 𝑉 = ⊎𝑛𝑖=1𝑉𝑖 and 𝐸𝑖 = 𝐸 ∩ (𝑉𝑖 ×𝑉𝑖)
(2) For every 𝐺𝑖 , there is at most one node 𝑛 ∈ 𝑉𝑖 such that Preds(𝐺,𝑛) ⊈ 𝑉𝑖
(3) Every waituntil(𝑝) statement must belong to its own 𝐺𝑖 — i.e., if a node 𝑛 ∈ 𝑉 is a waituntil

statement, then there exists a 𝐺𝑖 = ({𝑛}, ∅)
Intuitively, a partition is a set of sub-CFGs such that (1) these sub-CFGs cover all nodes of the

original CFG, (2) each sub-CFG has a unique entry node, and (3) waituntil statements belong to
their own sub-CFG. We refer to the code snippet represented by each sub-CFG as a code fragment

and define a notion of fragment dependency graph (FDG) as follows:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:11

Definition 4.2. (FDG) Given a method 𝑚 with CFG 𝐺 = (𝑉 , 𝐸) and a partition of 𝐺 into
{𝐺1, . . . ,𝐺𝑛}, a fragment dependency graph (FDG) is a directed acyclic graph (𝑉 ′, 𝐸 ′) such that
(1) every 𝑓𝑖 ∈ 𝑉 ′ is the code fragment associated with𝐺𝑖 ; (2) there is an edge (𝑓𝑖 , 𝑓𝑗) ∈ 𝐸 ′ iff there
is an edge in 𝐺 from any exit node of 𝐺𝑖 to the entry node of 𝐺 𝑗 .

Example 4.3. Figure 4 presents the FDG of method take for the partition in Figure 1a,

waituntil(count < length) queue[last] = o

last = (last + 1)%lengthcount++

Fig. 4. FDG for method take.

Observe that we require the FDG to be
acyclic, so some partitions do not give rise to
valid FDGs. In the rest of this paper, we assume
that partitions obey this restriction so that all
cycles are contained within individual nodes of
the FDG. We also lift this notion of FDG from
individual methods to entire monitors in the
obvious way (i.e., union of all FDGs). As we will
see in the next section, our synthesis algorithm
operates over FDG representations of monitors.

Next, we state the following NP-completeness result to justify our MaxSAT encoding:

Theorem 4.4. (NP-Completeness) Let G = (𝑉 , 𝐸) be an FDG of monitorM , and let Π ⊆ 𝑉 ×𝑉 be

a set of fragment pairs that can run in parallel. Then, deciding whether there exists a synchronization

protocol with at most 𝑘 locks and that allows all pairs in Π to run in parallel is NP-Complete.

Proof. By reduction from the edge clique cover problem [Michael and Quint 2006]. The proofs
of all theorems can be found in the extended version of the paper [Ferles et al. 2022]. □

4.2 Synthesis Algorithm
In this section, we describe our core synthesis procedure, which is summarized in Figure 5. At a high
level, the SynthesizeMonitor algorithm consists of the following steps. First, it uses the technique
of Ferles et al. [2018] to infer signaling operations (line 4). This yields a partially concretized
monitor𝑀 ′ with signaling operations but no locking. Next, it constructs an FDG representation
of the resulting monitor 𝑀 ′ as defined in Section 4.1 (line 5). Third, it infers an upper bound N𝑢

on the maximum number of locks that the synthesized code should use (line 6). Then, it statically
analyzes the FDG to infer requirements that the synthesized code needs to obey (line 7) and uses
the results of the previous steps to generate the MaxSAT encoding (line 11). Finally, it instruments
𝑀 ′ (line 14) using the synchronization protocol inferred using MaxSAT. Since the most involved
aspects of this algorithm are the MaxSAT encoding and inference of safe interleavings, we defer a
detailed discussion of these to the next two subsections and focus on the rest.

Iterative Exploration of Lock Count. As mentioned above, our synthesis algorithm conceptu-
ally reduces the protocol synthesis problem to MaxSAT and uses an off-the-shelf solver to maximize
our optimization objective. To achieve this goal, one option is to generate the MaxSAT encoding
based on the maximum possible locks (obtained via the call to ComputeMaxLocks) and then let
the solver figure out the optimal number of locks to use. However, in practice, such an approach
does not scale because the size of the encoding increases with respect to the maximum number of
locks allowed. That is, for many realistic problems, the MaxSAT solver fails to terminate within
a reasonable time limit if we generate the encoding based on the maximum possible locks. Thus,
instead of directly generating a very large MaxSAT formula up front, our SynthesizeMonitor
procedure enters a loop (lines 9–13) wherein it gradually increases the maximum number of locks
allowed (and hence the size of the MaxSAT encoding). If we get to a point where the MaxSAT solver
starts timing out (indicated by boolean variable called timeout) or we fail to increase the objective

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:12 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

1: procedure SynthesizeMonitor(M)
2: input: M: an implicit-synchronization monitor.
3: output: a semantically equivalent explicit-synchronization monitor.
4: M

′← PlaceSignals(M) ⊲ Use technique of Ferles et al. to infer signaling operations
5: G ← ConstructFDG(M ′)
6: N𝑢 ← ComputeMaxLocks(G)
7: S ← StaticAnalyze(G)
8: 𝑜𝑝𝑡 ← −1
9: for 𝑖 ∈ [1,N𝑢] do
10: (H ,S) ← MaxSatEncoding(M,G,S, 𝑖)
11: (𝑝, 𝑣, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡) ← Solve(H ,S)
12: if 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ∨ (𝑣 ≤ 𝑜𝑝𝑡) then break
13: (𝑏𝑒𝑠𝑡, 𝑜𝑝𝑡) ← (𝑝, 𝑣)
14: return Intrument(𝑏𝑒𝑠𝑡,G,M ′)

Fig. 5. Main Synthesis Algorithm.

value despite using a larger upper bound on locks (see line 12), then the procedure terminates
with the best sychronization policy found so far. While this strategy does not guarantee global
optimality, it is much more practical than the alternative.

void put(Object o) {
waituntil(count < queue.length);
boolean wasEmpty = count == 0;
queue[last] = o;
last = (last + 1) %
count++;
broadcast(count == 0, wasEmpty);

}

Fig. 6. Method put with explicit signals.

Signaling Operations. Our synthesis algorithm uses
an auxiliary procedure called PlaceSignals [Ferles et al.
2018] which yields a monitor M ′ that belongs to an in-
termediate language that is identical to our source lan-
guage (Figure 2a) except that it contains explicit signaling
operations. Specifically, this intermediate language con-
tains two additional signaling directives: (1) signal(p,c)
which notifies a single thread that is blocked on predicate
p if condition c holds, and (2) broadcast(p,c) which no-
tifies all threads blocked on p if c holds. Figure 6 shows
the result of calling PlaceSignals on the put procedure from Figure 1a.

FDG Construction. Recall that an FDG is a generalized version of a control-flow graph where
nodes are code fragments rather than basic blocks, and each code fragment is a unit of computation
that our algorithm should assign locks to. Since there can be many ways to partition a given
method into code fragments, the ConstructFDG procedure invoked at line 5 of Figure 5 implements
a particular heuristic for partitioning a method into code fragments. In particular, the more the
number of code fragments, the more the parallelization opportunities; thus, our ConstructFDG
procedure tries to maximize the number of code fragments while maintaining the invariant that
the FDG is acyclic and that each code fragment must have a unique entry point (see Section 5).

Computing Upper Bound on Locks. Because the MaxSAT encoding assumes a fixed number
of locks, our synthesis algorithm calls the ComputeMaxLocks procedure at line 6 to compute an
upper bound on the number of locks needed. Given an FDG G = (𝑉 ,𝐺), the key idea behind this

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:13

procedure is to construct a so-called conflict graph𝐺𝐶 = (𝑉 , 𝐸𝐶) where (𝑓 , 𝑓 ′) is in 𝐸𝐶 iff fragments
𝑓 and 𝑓 ′ have a data race. Since it can be shown that the optimal solution to our problem is an
edge clique cover [Michael and Quint 2006] of this conflict graph (see extended version [Ferles et al.
2022]), we can use known theorems (e.g., Mantel’s theorem, Alon [1986] etc.) to obtain an upper
bound on the number of locks needed without having to solve an NP-complete problem.1

Static Analysis. Recall from Section 2 that the constraints in our MaxSAT encoding utilize
information obtained via static analysis. Thus, line 7 of Figure 5 statically analyzes the input monitor
to obtain the following three pieces of information:
• Atomic fields F : One of the goals of the analysis is to infer a set of fields that could potentially

be implemented using Atomic types. Thus, our static analysis checks whether (a) a field of type T

has a corresponding AtomicT version, and (b) whether all updates to this field can be implemented
using one of the methods provided by AtomicT.
• Data races R: The second goal of our static analysis is to identify pairs of fragments that would
have a data race if they do not use a shared lock. Thus, given a pair of fragments (𝑓 , 𝑓 ′), our
static analysis checks whether 𝑓 writes to a memory location 𝑙 that is accessed in 𝑓 ′.
• Interleaving opportunities I: Finally, a third key goal of the analysis is to identify safe
interleaving opportunities between fragments. Since this aspect of the analysis is quite involved,
we discuss it in the next subsection.

MaxSAT Encoding. As mentioned in Section 2, our MaxSAT encoding uses two types of boolean
variables, namely (1) ℎ𝑙 𝑗

𝑓𝑖
indicating that fragment 𝑓𝑖 must hold lock 𝑙 𝑗 and (2) 𝑎𝑓 indicating that field

𝑓 should be converted to atomic. Hence, a model of the MaxSAT problem can be easily converted
to a so-called locking protocol (L,A,P), where L is an assignment from fragments to a set of
locks, A is a set of fields that should be implemented using atomic types, and P is a mapping from
waituntil guards to locks. In particular, we have 𝑙 𝑗 ∈ L(𝑓𝑖) if and only if ℎ𝑙 𝑗

𝑓𝑖
is assigned to true in

the model returned by the MaxSAT solver, and we have fld ∈ A if 𝑎fld is assigned to true. Due to
the constraints in our MaxSAT encoding, it is similarly easy to derive P: because our encoding
ensures that every occurrence of a waituntil(p) statement is protected by the same set of locks 𝑆 ,
we associate one of the locks 𝑙 in 𝑆 with the condition variable introduced for predicate p.2

Instrumentation. The last step of our algorithm is to synthesize the explicit-synchronization
monitor via the Instrument procedure invoked at line 14. Given a synchronization protocol
(L,A,P), the Instrument procedure performs the following steps:
(1) First, it introduces all the synchronization fields (locks, condition variables, and atomic fields)

that appear in the protocol.
(2) It converts every update to an atomic field to the corresponding atomic update statement.
(3) Finally, it introduces all the necessary locking and signaling operations to implement the

synthesized synchronization protocol.
We refer the interested reader to the extended version of the paper [Ferles et al. 2022] for more

details on the instrumentation.

1In our implementation, we use multiple upper bounds using known theorems and return the best one.
2Specifically, when choosing which lock 𝑙 in set 𝑆 to designate as the representative, we choose the smallest lock in 𝑆

according to the total order. Because all locks held by a thread must be released before it blocks on a condition variable and
must be acquired after it gets notified (with method await releasing and acquiring 𝑙 internally), choosing the smallest lock
prevents deadlocks.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:14 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

Theorem 4.5. 3(Correctness) Given an implicit-synchronization monitor M in the language of

Figure 2a, if SynthesizeMonitor(M) returns M ′, then we have M ∼ M
′
.

4.3 Analysis to Identify Safe Interleavings
We now describe how to infer safe interleaving opportunities between threads while ensuring that
monitor operations appear to take place atomically. Given a fragment dependency graph G = (𝑉 , 𝐸)
for a monitor M , an interleaving opportunity (or interleaving for short) is a pair (𝑣, 𝑒) where 𝑣 ∈ 𝑉
is a code fragment of𝑀 and 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸 is an edge of the FDG. Intuitively, such an interleaving
is safe if some thread can execute 𝑣 in between some other thread’s execution of 𝑣1 and 𝑣2 without
violating atomicity. The goal of our static analysis is to identify a set I of such safe interleavings.
In what follows, we formalize safe interleavings and describe an analysis for identifying them.

Formalizing Safe Interleavings. To formalize the notion of safe interleaving, we need to keep
track of which fragments of the monitor were executed in what order. For this purpose, given
an FDG G = (𝑉 , 𝐸) of M , we define a fragmented monitor MG to be the same as M except that
every fragment in G is placed in its own method. Observe that histories of MG encode all possible
interleavings of fragments in G. In this sense, histories of MG are similar to explicit monitor
histories but are slightly higher level in that they allow interleavings between fragments rather
than atomic statements. Thus, we adapt the same notions of sequential, well-formed, and interleaved
histories from Section 3.3 to fragmented monitors, as illustrated by the following examples.

Example 4.6. Given monitor M from Figure 1a, its fragmented version MG splits put and take

into four different methods, each named put𝑖 and take𝑖 . Given history ℎ = (𝑡𝑎𝑘𝑒, 𝑡) and initial state
𝜎 with a non-empty queue, we have

Expand
MG (ℎ, 𝜈, 𝜎) = ((take1, 𝑡) (take2, 𝑡) (take3, 𝑡) (take4, 𝑡), 𝜈

′)

where take1, . . . , take4 denote fragments 5-8 in Figure 1a and 𝜈 ,𝜈 ′ are empty argument mappings.

Example 4.7. In the example above, Expand
MG (ℎ, 𝜈, 𝜎) is both sequential and well-formed. How-

ever, (take1, 𝑡), (take2, 𝑡) is not well-formed because it does not involve all four methods, and
(take1, 𝑡), (take3, 𝑡), (take2, 𝑡), (take4, 𝑡) is also not well-formed because it executes take3 before
take2. Finally, the following history is an interleaved (and, by definition, well-formed) history where
threads 𝑡 and 𝑡 ′ execute method take and put respectively:

ℎG = (put1, 𝑡) (put2, 𝑡) (put3, 𝑡) (take1, 𝑡 ′) (put4, 𝑡) (take2, 𝑡 ′) (take3, 𝑡 ′) (take4, 𝑡 ′) (1)

Furthermore, for this history we have (ℎG, 𝜈G) ∽ ((𝑝𝑢𝑡, 𝑡) (𝑡𝑎𝑘𝑒, 𝑡 ′), 𝜈) for some 𝜈G and 𝜈 . That is,
ℎG simulates a history of M where thread 𝑡 executes method put and 𝑡 ′ executes take.

Definition 4.8. (Interleaving) Given an FDG G = (𝑉 , 𝐸) for monitor M , an interleaving is a pair
(𝑣, 𝑒) where 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸. Furthermore, given a history ℎ of fragmented monitor MG , we write
X(ℎG) to denote the set of all interleavings that occur in ℎ.

Example 4.9. For the history ℎG from Eq. 1, we have:

X(ℎG) = {(take1, (put3, put4)), (put4, (take1, take2))}

This is the case because this history executes take1 in between consecutive fragments put3 and put4
of some other thread. Similarly, we have (put4, (take1, take2)) ∈ 𝜒 (ℎG) because it executes put4 in
between take1 and take2.

3All proofs of this Section are in the extended version of the paper [Ferles et al. 2022]

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:15

Definition 4.10. (Safe interleavings). Let G be an FDG of monitor M . We say that a set of
interleavings 𝑆 is safe, if for every input state 𝜎 and every interleaved history ℎG of MG we have:

If X(ℎG) ⊆ 𝑆 and MG ⊢ (ℎG, 𝜈G, 𝜎) ⇓ 𝜎 ′ then ∃ℎ, 𝜈 . (ℎG, 𝜈G) ∽ (ℎ, 𝜈) and M ⊢ (ℎ, 𝜈, 𝜎) ⇓ 𝜎 ′

In other words, a set of interleavings 𝑆 is safe if for every interleaved history of ℎG whose
interleavings are a subset of 𝑆 we can prove that ℎG leads to the same final state as some history
ℎ of𝑀 where ℎ simulates ℎG . This definition essentially lifts the second correctness criterion of
Definition 3.16 to a fragmented monitor.

Inferring Safe Interleavings. We now turn our attention to the problem of inferring safe
interleavings. Given a monitor M and its FDG G = (𝑉 , 𝐸), our goal is to find a set I ⊆ 𝑉 × 𝐸

such that all interleavings in I are safe. However, a key challenge is that the space of all safe
interleavings is exponential (i.e., the power set of𝑉 ×𝐸), so, even if we had a procedure for checking
whether some set I is safe, enumerating all candidates would be computationally intractable.

To overcome this challenge, we introduce the notion of strong safety that allows us to build
I iteratively. In particular, note that if 𝑆1 and 𝑆2 are both safe interleaving sets according to
Definition 4.10, it may not be the case that 𝑆1 ∪ 𝑆2 is also a safe interleaving. However, to build I
incrementally, we need a notion of safe interleaving that is closed under union. For this purpose, we
introduce a notion of strong safety for a single interleaving (𝑣, 𝑒). Since strongly safe interleavings
enjoy the property of being closed under union, this notion lends itself to a computationally feasible
technique for computing safe interleaving sets. In the remainder of this section, we define strong
safety and present our static analysis for computing safe interleaving sets. Towards this goal, we
first introduce the notions of left and right commutativity for our context:

Definition 4.11. (Left/Right Commutativity). Given fragments 𝑣 and 𝑣 ′, we say that 𝑣 left

commutes with 𝑣 ′, denoted LeftCommute(𝑣 , 𝑣 ′), iff, wheneverMG ⊢ ((𝑣 ′, 𝑡 ′) (𝑣, 𝑡), 𝜈, 𝜎) ⇓ 𝜎 ′ holds, so
does MG ⊢ ((𝑣, 𝑡) (𝑣 ′, 𝑡 ′), 𝜈, 𝜎) ⇓ 𝜎 ′. Conversely, 𝑣 right commutes with 𝑣 ′, denoted RightCommute(𝑣 ,

𝑣 ′), iff MG ⊢ ((𝑣, 𝑡) (𝑣 ′, 𝑡 ′), 𝜈, 𝜎) ⇓ 𝜎 ′ implies MG ⊢ ((𝑣 ′, 𝑡 ′) (𝑣, 𝑡), 𝜈, 𝜎) ⇓ 𝜎 ′.

In other words, a fragment 𝑣 left commutes with 𝑣 ′ if, whenever 𝑣 executes just after 𝑣 ′, the
resulting state is the same as if 𝑣 had executed just before 𝑣 ′. For example, 𝑓4 (i.e. count++) in Figure 1a
left-commutes with 𝑓5 since increasing count right after waituntil(count > 0) is equivalent to
increasing count just before waituntil(count >0). That is, assuming that waituntil(count>0) was
not blocked before executing count++, then it will still not be blocked after executing count++.
However, 𝑓4 does not left-commute with 𝑓1: when count equals queue.length - 1, incrementing
count just after waituntil (count < queue.length) is not equivalent to incrementing queue.length

before the waituntil statement. That is, if waituntil(count < queue.length) did not block before
executing count++, we cannot guarantee that it also does not block after executing count++.
Next, we use this notion of left and right commutativity to define strong safety:

Definition 4.12. (Strong safety). Let G = (𝑉 , 𝐸) be an FDG for monitor M , and let 𝐸∗ denote the
reflexive transitive closure of 𝐸. We say that an interleaving (𝑣, 𝑒), where 𝑒 = (𝑣𝑠 , 𝑣𝑡), is strongly
safe if the following conditions are satisfied:
(1) ∀𝑣− .(𝑣−, 𝑣𝑠) ∈ 𝐸∗ =⇒ LeftCommute(𝑣, 𝑣−)
(2) ∀𝑣+ .(𝑣𝑡 , 𝑣+) ∈ 𝐸∗ =⇒ RightCommute(𝑣, 𝑣+)

That is, an interleaving (𝑣, 𝑒) is said to be strongly safe if we can prove that fragment 𝑣 left
commutes with every possible predecessor of 𝑣𝑠 and that it right commutes with every possible
successor of 𝑣𝑡 . To see why these conditions imply safety, recall that a set of interleavings 𝑆 is safe
if, for any history ℎG whose interleavings are a subset of 𝑆 , we can find some (sequential) history

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:16 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

1: procedure FindSafeInterleavings(G)
2: input: An FDG representation G = (𝑉 , 𝐸) of monitor M
3: output: A set I of all safe interleavings
4: I ← ∅
5: for 𝑣 ∈ 𝑉 , 𝑒 = (𝑣𝑠 , 𝑣𝑡) ∈ 𝐸 do
6: 𝑉 ∗𝑠 ← { 𝑣 ′ | (𝑣 ′, 𝑣𝑠) ∈ 𝐸∗ } ⊲ All predecessor vertices that reach 𝑣𝑠 .
7: 𝑉 ∗𝑡 ← { 𝑣 ′ | (𝑣𝑡 , 𝑣 ′) ∈ 𝐸∗ } ⊲ All successor vertices of 𝑣𝑡 .
8: if

(
∀𝑣∗𝑠 ∈ 𝑉 ∗𝑠 . LeftCommute(𝑣, 𝑣∗𝑠)

)
∧
(
∀𝑣∗𝑡 ∈ 𝑉 ∗𝑡 . LeftCommute(𝑣∗𝑡 , 𝑣)

)
then

9: I ← I ∪ {(𝑣, 𝑒)}
10: return I

11: function LeftCommute(𝑣, 𝑣 ′)
12: input: Two fragments 𝑣 , 𝑣 ′
13: output: true iff 𝑣 left commutes with 𝑣 ′

14: 𝑋 ← {𝑥 | 𝑥 is a variable in 𝑣 or 𝑣 ′}.
15: 𝑋𝐿 ← {𝑥𝑙 fresh name | 𝑥 ∈ 𝑋 } 𝑋𝑅 ← {𝑥𝑟 fresh name | 𝑥 ∈ 𝑋 }
16: 𝑆𝐿 ← (𝑣 ′; 𝑣) [assume/waituntil, 𝑋𝐿/𝑋] 𝑆𝑅 ← (𝑣 ; 𝑣 ′) [assert/waituntil, 𝑋𝑅/𝑋]
17: return Verify({𝑋𝐿 = 𝑋𝑅} 𝑆𝐿 ; 𝑆𝑅 {𝑋𝐿 = 𝑋𝑅})

Fig. 7. Algorithm to find all safe interleavings.

of the original monitor that simulates ℎG . Assuming 𝑆 contains only strongly safe interleavings, we
can create such a sequential history by “removing” interleavings one at a time from ℎG . For instance,
let 𝜒 = (𝑣, (𝑣𝑠 , 𝑣𝑡)) ∈ 𝑆 be an interleaving that occurs in ℎG . Since 𝜒 is strongly safe, we can always
obtain an equivalent history ℎ′G that has strictly less interleavings than ℎG by commuting 𝑣 past
either every successor of 𝑣𝑡 or every predecessor of 𝑣𝑠 that appears in ℎG .

Example 4.13. For the monitor from Figure 1a, we can show that every interleaving (𝑣, 𝑒) where 𝑣
belongs to method take and edge 𝑒 belongs to method put (and vice versa) is strongly safe. However,
none of the interleavings where 𝑣 and 𝑒 belong to the same method are strongly safe. Finally,
because both of the interleavings of the history ℎG from Eq. 1 are strongly safe, we can derive a
sequential history that simulates history ℎG by swapping (take1, 𝑡 ′) with (put4, 𝑡).

We now state a key theorem that underlies the correctness of our approach:

Theorem 4.14. LetG be an FDG and let 𝜒1, . . . , 𝜒𝑛 be strongly safe interleavings. Then, {𝜒1, . . . , 𝜒𝑛}
satisfies Definition 4.10 (i.e., is a safe interleaving set for G).

Static Analysis Algorithm. Finally, we conclude this section by presenting our static analysis
algorithm (shown in Figure 7) for computing a set I of safe interleavings. At a high level, this
algorithm identifies which (𝑣, 𝑒) pairs are strongly safe and then returns their union, which by
Theorem 4.14, corresponds to a safe interleaving set. To check whether an interleaving (𝑣, 𝑒) (for
𝑒 = (𝑣𝑠 , 𝑣𝑡)) is strongly safe, we must check if 𝑣 left commutes with each predecessor of 𝑣𝑠 and
right commutes with each successor of 𝑣𝑡 . As shown in the LeftCommute procedure, we reduce

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:17

Race-1
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣1) 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣2) 𝑅𝑎𝑐𝑒𝑠 = R(𝑣1, 𝑣2) 𝑅𝑎𝑐𝑒𝑠 ⊆ F 𝑅𝑎𝑐𝑒𝑠 = { this.f }

𝑀𝑢𝑡𝑒𝑥 ({𝑣1, 𝑣2},N) ∨ a𝑓 ∈ H

Race-2
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣1) 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣2) 𝑅𝑎𝑐𝑒𝑠 = R(𝑣1, 𝑣2) 𝑅𝑎𝑐𝑒𝑠 ≠ ∅ (|𝑅𝑎𝑐𝑒𝑠 | > 1 ∨ 𝑅𝑎𝑐𝑒𝑠 ⊈ F)

𝑀𝑢𝑡𝑒𝑥 ({𝑣1, 𝑣2},N) ∈ H

I-Leave
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣) 𝐼𝑠𝐸𝑑𝑔𝑒 (𝑒) 𝑒 = (𝑣𝑠 , 𝑣𝑡) ¬SafeInterleaving(𝑣, 𝑒)

𝑀𝑢𝑡𝑒𝑥 ({𝑣, 𝑣𝑠 , 𝑣𝑡 },N) ∈ H

Wait

𝑝 ∈ 𝑃𝑟𝑒𝑑𝑠 (M)
𝐹 = { 𝑓 | 𝐼𝑠𝐹𝑟𝑎𝑔(𝑓), 𝑓 ≡ waituntil(p)}

𝑀𝑢𝑡𝑒𝑥 (𝐹,N) ∈ H
N∧
𝑖=1

∧
𝑣1,𝑣2∈𝐹

(
h
𝑙𝑖
𝑣1 ↔ h

𝑙𝑖
𝑣2

)
∈ H

L-Order
𝐼𝑠𝐸𝑑𝑔𝑒 (𝑒)

𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) ∈ H

Min-Lock

𝑚 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 (M)
𝑀𝐹 = { 𝑣 | 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣), 𝑀𝑒𝑡ℎ𝑜𝑑 (𝑣) =𝑚 }

N⋃
𝑖=1
{ ∧
𝑓 ∈𝑀𝐹

¬h𝑙𝑖
𝑓
} ⊆ S

Min-Atom
this.fld ∈ F
¬a𝑓 𝑙𝑑 ∈ S

Max-Par
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣1) 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣2) R(𝑣1, 𝑣2) = ∅

¬𝑀𝑢𝑡𝑒𝑥 ({𝑣1, 𝑣2},N) ∈ S

Aux-Defs 𝑀𝑢𝑡𝑒𝑥 (𝐹,N) =
N∨
𝑖=1

∧
𝑓 ∈𝐹

h
𝑙𝑖
𝑓

𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 ((𝑣𝑠 , 𝑣𝑡),N) =
∧

1≤ℓ<𝑢≤N
¬
(
h
𝑢
𝑣𝑠
∧ h𝑢𝑣𝑡 ∧ ¬h

ℓ
𝑣𝑠
∧ hℓ𝑣𝑡

)
Fig. 8. Inference rules for MaxSatEncoding(M,G,S,N) procedure. G = (𝑉 , 𝐸) is an FDG of monitor M ,

S = (F ,R,I) are the results of the static analysis, andN is an upper bound on the number of locks. Predicate

𝐼𝑠𝐹𝑟𝑎𝑔(𝑣) is true if 𝑣 ∈ 𝑉 , 𝐼𝑠𝐸𝑑𝑔𝑒 (𝑒) if 𝑒 ∈ 𝐸, and 𝑆𝑎𝑓 𝑒𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝑣, 𝑒) if (𝑣, 𝑒) ∈ I. Relations𝑀𝑒𝑡ℎ𝑜𝑑𝑠 (M)
and 𝑃𝑟𝑒𝑑𝑠 (M) return all methods of monitorM and all predicates that appear as an argument of a waituntil
statement in M respectively.

the verification of left commutativity to the problem of verifying a Hoare triple. In particular,
given fragments 𝑣, 𝑣 ′, we generate a code snippet 𝑆𝐿 ; 𝑆𝑅 where (1) 𝑆𝐿 is an alpha-renamed version
of 𝑣 ′; 𝑣 with waituntil’s replaced by assume statements, and (2) 𝑆𝑅 is an alpha-renamed version
of 𝑣 ; 𝑣 ′ with waituntil’s replaced by assert statements. Note that we turn waituntil’s in 𝑆𝐿 into
assumes because the definition of left commutativity assumes that 𝑣 ′; 𝑣 has terminated. On the
other hand, we need to show that 𝑆𝑅 does not block; thus, we assert that the predicates in the
waituntil statement evaluate to true under the assumption that they also evaluate to true in 𝑆𝐿 .
Finally, in addition to showing that waituntil’s are not blocked, we also need to establish that
the monitor state is the same in 𝑆𝐿 and 𝑆𝑅 . Thus, the Hoare triple we construct checks that the
values of variables are the same at the end, assuming that they are the same in the beginning.
Note that the implementation of right commutativity is the same with 𝑣 and 𝑣 ′ swapped; thus,
RightCommute(𝑣, 𝑣 ′) can be checked by directly calling LeftCommute(𝑣 ′, 𝑣).

4.4 MaxSAT Encoding
In this section, we describe our MaxSAT encoding which is formalized as inference rules in Figure 8.
Recall that the encoding procedure takes as input (a) an FDG representation of the monitor, (b)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:18 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

the results of the static analysis, and (c) an upper bound on the maximum number of locks, and
it produces a set of hard constraints H and a set of soft constraints S. In the remainder of this
section, we describe the inference rules in Figure 8 for generating these constraints in more detail.

Variables. Our MaxSAT encoding uses two types of variables. First, we introduce variables of the
form ℎ

𝑙 𝑗
𝑣𝑖 indicating that fragment 𝑣𝑖 needs to hold lock 𝑙 𝑗 . Thus, given an FDG with 𝑛 vertices and

an upper boundN on the number of locks, our encoding contains 𝑛×N such variables. The second
type of variable used in our encoding is of the form 𝑎fld indicating that fld should be implemented
using an atomic type.

Mutex Encoding. Given a set of fragments 𝐹 and an upper boundN on the number of locks, we
often need to enforce that all fragments in 𝐹 share at least one of the N possible locks. We write
Mutex(𝐹,N) to denote this requirement. In particular, as shown at the bottom of Figure 8, this is

defined as𝑀𝑢𝑡𝑒𝑥 (𝐹,N) =
N∨
𝑖=1

∧
𝑓 ∈𝐹

h
𝑙𝑖
𝑓
.

Hard Constraints. Next, we describe the hard constraints generated by our MaxSAT encoding.
These hard constraints H correspond to correctness requirements on the synthesized protocol
and include (1) data race freedom, (2) correct signaling and deadlock freedom and (3) atomicity.
Specifically, the first two rules in Figure 8 deal with data race freedom, the next rule deals with
atomicity, and the last two rules deal with deadlock freedom and correct signaling.

Race-1. The first rule, labeled Race-1, deals with data race freedom of two fragments that have a
data race on a single monitor field f. The premises of this rule stipulate that 𝑣1, 𝑣2 are fragments that
race only on field 𝑓 which can be converted to atomic (i.e., this.f ∈ F). In this case, we prevent
data races by either (1) enforcing that 𝑣1, 𝑣2 share a lock (the Mutex constraint) or (2) ensuring that
field 𝑓 is converted to an atomic field.

Race-2. The next Race-2 rule prevents data races between fragments where the data race cannot
be resolved by making one of the fields atomic. In particular, given two fragments 𝑣1, 𝑣2 that have a
data race, this rule simply enforces that they share a common lock via the Mutex function.

I-Leave. The next rule generates constraints to ensure that monitor operations appear to take
place atomically. In particular, if the static analysis cannot prove (𝑣, 𝑒) to be a strongly safe inter-
leaving (recall Definition 4.12), then we need to ensure that a thread cannot execute 𝑣 when some
other thread is executing 𝑒 . To do so, we ensure that 𝑣, 𝑣𝑠 , 𝑣𝑡 all share a common lock by generating
a Mutex hard constraint for these three fragments.

L-Order. The next rule, labeled L-Order, ensures that the resulting synchronization protocol is
deadlock-free. Specifically, for every edge 𝑒 = (𝑣𝑠 , 𝑣𝑡) in the input FDG, this rule generates a hard
constraint, via 𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) (defined at the bottom of Figure 8), that ensures that every lock
acquisition respects the total order on locks. In particular, for every pair of locks 𝑙, 𝑢 such that 𝑙 ≺ 𝑢,
𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) prevents the synchronization protocol from violating the global order on locks.
Recall that a protocol violates this global order if it acquires the “smaller" lock 𝑙 between 𝑣𝑠 and 𝑣𝑡
while both 𝑣𝑠 and 𝑣𝑡 hold lock 𝑢. Thus, the hard constraint generated by 𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) prevents
this from happening.

Example 4.15. Assuming N = 2, this rule generates ¬
(
h
𝑙2
𝑣𝑠 ∧ h

𝑙2
𝑣𝑡 ∧ ¬h

𝑙1
𝑣𝑠 ∧ h

𝑙1
𝑣𝑡

)
for edge (𝑣𝑠 , 𝑣𝑡).

Wait. The last hard constraint rule, called Wait, is used for associating a single lock with each
condition variable. In particular, since all fragments of the form waituntil(𝑝) must hold the same

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:19

set of locks, this rule generates two hard constraints for every waituntil predicate 𝑝 of the input
monitor: (1) a mutex constraint for all waituntil(𝑝) fragments and (2) a constraint that enforces
that all waituntil(𝑝) fragments must share all common locks.

Soft Constraints. As discussed earlier, our goal is to generate a synchronization protocol that is
not only correct-by-construction but one that also results in efficient code. Hence, as a proxy metric
for efficiency, we want to (1) minimize the number of locks and atomic fields that are introduced,
and (2) maximize the number of fragments that can run in parallel. The remaining three rules in
Figure 8 introduce soft constraints to encode this optimization objective.

Min-Lock. The rule labeled Min-Lock is used for minimizing the number of locks. However,
instead of simply minimizing the total number of locks used by the protocol, the soft constraints
generated by this rule minimize the number of locks used per method. Even though this is not
equivalent to minimizing the number of locks used by the entire protocol, we have found this
approach to synthesize protocols with a more even distribution of locks among the monitor methods.
In practice, such protocols are more desirable because they avoid scenarios where a subset of the
methods incur a higher synchronization cost than others. Specifically, this rule generates a soft
constraint for every lock 𝑙 ∈ {𝑙1...𝑙N} and every method 𝑚 of M and asserts that none of the
fragments in𝑚 hold lock 𝑙 .

Min-Atom. The Min-Atom rule generates soft constrains to minimize the number of fields that
are made atomic by asserting that a𝑓 𝑙𝑑 is assigned to false.

Max-Par. The last rule called Max-Par generates soft constraints to maximize parallelism.
Specifically, for every pair of fragments (𝑣, 𝑣 ′) that do not have data races, we add a soft constraint
stating that 𝑣 and 𝑣 ′ do not share any locks.

We conclude this Section with a theorem that states the correctness of our MaxSAT encoding.

Theorem 4.16. Let𝑚 be a model of the generated MaxSAT instance and (L,A,P) be the synchro-
nization protocol constructed as follows:

L =

{
𝑣 ↦→

{
𝑙 | 𝑚[ℎ𝑙𝑣]

}}
A =

{
fld | 𝑚[a𝑓 𝑙𝑑]

}
P =

{
𝑝 ↦→ 𝑙𝑖 | 𝐼𝑠𝑊𝑎𝑖𝑡 (𝑣, 𝑝), 𝑖 =𝑚𝑖𝑛({ 𝑗 | 𝑚[h𝑙 𝑗𝑣]})

}
where, 𝐼𝑠𝑊𝑎𝑖𝑡 (𝑣, 𝑝) is true if v is a waituntil statement on 𝑝 . Then, (L,A,P) is a correct synchro-
nization protocol.

5 IMPLEMENTATION
We have implemented our approach in a tool called Cortado that emits explicit-synchronization
monitors in Java. Cortado is based on the Soot program analysis infrastructure [Vallée-Rai et al.
1999] and the Z3 SMT solver [de Moura and Bjørner 2008]. In particular, we use Soot to perform
various kinds of static analyses needed by our method (e.g., pointer analysis) and to translate
the input monitor to an explicit-synchronization monitor in Java. Furthermore, we leverage Z3
for solving MaxSAT instances and discharging the validity queries that arise when checking
commutativity between fragments. In the remainder of this section, we discuss several design
choices and optimizations that were not discussed previously.

Weights of SoftConstraints. As expected, the quality of the synthesized protocol depends on the
model returned by the MaxSAT solver. In practice, we have observed certain types of soft constraints
to be more important than others for efficiency. Thus, our implementation assigns different weights
for different classes of soft constraints. For instance, because it is always preferable to use an atomic

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:20 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

field instead of a lock, Cortado assigns a higher weight to soft constraints generated by rule
Min-Atom from Figure 8 than the ones generated by rule Min-Lock.4

Constructing FDGs. As mentioned in Section 4, Cortado uses a heuristic to partition the
input CFG into fragments. The goal of this heuristic is to maximize parallelization opportunities
while ensuring that the partition results in a valid FDG according to Definition 4.2. Our heuristic
places every loop in its own fragment (to make sure that the FDG is well-formed) and, for code
outside loops, Cortado creates a new fragment whenever it detects an update to monitor state (i.e.,
this.fld = *). In practice, we found this heuristic to achieve a good balance between the number
of parallelization opportunities and the size of the resulting FDG.5

Static Analysis Optimization. Our approach uses an off-the-shelf pointer analysis to detect
which pairs of FDG fragments do not have a data race (and, so, can run in parallel). However,
such an approach, based on pointer analysis alone, often leads to imprecision. For example, Soot’s
pointer analysis cannot prove that fragments 2 and 6 in Figure 1a do not contain any races, as it
does not reason about individual array elements. Therefore, in order to increase the precision of
the static analysis, Cortado implements an SMT-based static analysis on top of Soot’s built-in
pointer analysis and generates appropriate verification conditions (similar to the ones generated
by Gurfinkel et al. [2015]) to prove that memory accesses of two fragments are disjoint.

6 EVALUATION
We evaluated Cortado’s ability to generate fine-grained locking protocols by performing a set of
experiments that are designed to answer the following research questions:
RQ1 How does the code generated byCortado compare against explicit-synchronizationmonitors

written by experts?
RQ2 How does the technique implemented in Cortado compare against other compile-time

state-of-the-art approaches targeting implicit-synchronization monitors?
RQ3 How does the static analysis for inferring safe interleavings impact the quality of the code

generated by Cortado?
RQ4 How long doesCortado take to synthesize code and how complex are the resulting protocols?
To answer these research questions, we conducted experiments on ten explicit-synchronization

monitors from popular open source repositories. Aside from Cortado, we consider two additional
baselines, described below, that aid us in answering our second and third research questions.

Benchmarks. The benchmarks used in our evaluation are collected from popular open source
GitHub repositories. We wrote a crawler (based on GitHub’s REST API [GitHub 2022]) to auto-
matically identify candidate explicit-synchronization monitors implemented in Java by searching
for keywords like lock, unlock, await, etc. We then manually inspected class files returned by the
crawler in decreasing order of GitHub popularity (stars and forks) and identified self-contained
monitor-style classes that encapsulate shared state accessed by multiple threads. We included such
a monitor in our benchmarks only if it satisfies the following conditions: (1) the class has a well-
defined API for client threads and (2) it contains parallelization opportunities that can be realized

via fine-grained locking.6 We manually isolated the shared state and monitor methods of the class

4An ablation study that demonstrates the need for adjusting the weights of soft constraints can be found in the extended
version of the paper [Ferles et al. 2022].
5An ablation study that justifies the design of this heuristic can be found in the extended version of the paper [Ferles et al.
2022].
6If a monitor does not contain parallelization opportunities, our technique generates code equivalent to that synthesized
by Ferles et al. [2018]. Since the goal of our evaluation is to evaluate Cortado’s ability to generate fine-grained locking

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:21

file to obtain a standalone explicit-synchronization monitor and then manually translated it to an
equivalent implicit monitor. To convert a benchmark to an implicit monitor, we simply removed all
synchronization code (i.e., locking and signaling operations) and introduced appropriate waituntil
statements. In total, we collected 10 monitors from popular repositories such as Spring Framework
(a Java-based framework for creating enterprise applications), Java JDK, Apache Spark (an analytics
engine for large-scale data processing), etc.7

Baselines. As mentioned above, our evaluation uses two additional baselines in order to answer
RQ2 and RQ3. To compare against other compile-time techniques (RQ2), we evaluate Expresso [Fer-
les et al. 2018], a tool that addresses the same problem as this paper but generates an explicit signal
monitor using a single global lock shared by all monitor methods. To evaluate the importance of
our static analysis (RQ3), we created an ablated version of Cortado, called Ablated, which uses a
very coarse analysis to infer safe interleavings. This ablated version considers (𝑣, (𝑣𝑠 , 𝑣𝑡)) a safe
interleaving only if 𝑣 does not have any data races with any predecessor (resp. successor) of 𝑣𝑠
(resp. 𝑣𝑡). This is a sufficient condition for strong safety, but it only requires checking data races
rather than discharging a set of Hoare triples.

Evaluating Performance. Following prior work [Ferles et al. 2018; Hung and Garg 2013], we
evaluate the performance of each monitor implementation by performing saturation tests [Cherem
et al. 2008] wherein threads perform monitor operations without doing any additional work. We
collect our performance measurements using the Java Microbenchmark Harness (JMH) [Shipilev
et al. 2021]. All measurements are conducted on a 112-way (56-core × 2 SMT) Intel Xeon CPU
W-3275 2.50GHz with 256 GB of memory using JDK 1.8.0_272. In this section, we present results for
each benchmark for up to 128 threads, chosen as an arbitrary stopping point past the total number
of hyper-threads. Results for up to 256 threads can be found in the extended version of the paper
[Ferles et al. 2022].

6.1 Performance Results
Figure 9 plots the average time taken per monitor method invocation (i.e., milliseconds/operation)
against the number of threads. In what follows, we analyze the plots in more detail and present
several conclusions drawn from these results. Because our benchmarks only contain monitors
where fine-grained locking is beneficial, we emphasize that our conclusions only apply to such
monitors.

Comparison Against Hand-Written Implementations (RQ1). For every benchmark, the
explicit synchronization monitor generated by Cortado performs better than the expert-written
implementation as the number of threads increases. In particular, Cortado-synthesized code
performs on average 3.7×8 and up to 39.1× times faster than the original code.

Comparison Against Expresso (RQ2). Cortado-generated explicit monitors perform better
than Expresso explicit monitors generated from the same implicit specification on all benchmarks.
Cortado-synthesized code outperforms Expresso by 4.0× on average (and up to 48.7×).

Comparison Against Ablated (RQ3). Finally, we analyze how Cortado compares to its
simplified version, Ablated, which does not use the results of the safe interleavings analysis from

protocols, we did not include benchmarks from prior work [Ferles et al. 2018; Hung and Garg 2013] that do not contain
such parallelization opportunities.
7All benchmarks are publicly available here: https://github.com/utopia-group/cortado
8In order to handle outliers such as in JobWrapper, for all reported aggregate speedups (max, mean, etc.) we throw out data
points with a z-score greater than two.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:22 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

Table 1. Synthesis time for each phase of Cortado and summaries of the synthesized protocols. LOC is lines

of code. Soot indicates pointer analysis time, Expresso is the time for monitor invariant generation and signal

placement, and Cortado shows the additional time on top of Soot and Expresso.

Synthesis Time (secs) Synthesized Protocol

Benchmark LOC Soot Expresso Cortado Total #Lock/#Op #Atomic/#Op LOC

ArrayBlockingQueue 287 16.7 1897.7 372.7 2302.5 2 / 18 1 / 25 514
ConcurrencyThrottleSupport 33 17.0 1.4 0.2 18.7 1 / 1 1 / 4 68
CountableThreadPool 54 20.4 0.8 0.2 21.5 1 / 1 1 / 5 85
JobWrapper 33 17.0 0.6 0.1 17.7 1 / 1 1 / 3 63
PausableThreadPoolExecutor 79 20.7 0.8 0.9 22.5 3 / 4 2 / 9 122
ProgressTracker 65 0.7 6.8 0.2 8.0 2 / 7 1 / 4 119
RealmThreadPoolExecutor 34 18.4 0.3 0.1 18.7 1 / 1 1 / 3 61
RoundTripWorker 62 16.7 3.1 0.4 20.4 2 / 4 1 / 4 103
SinkQueue 75 15.7 981.4 34.6 1031.8 2 / 4 1 / 8 131
WSDataListener 158 18.3 5.2 1.0 25.1 4 / 11 0 / 0 222

Section 4.3. In five cases, the code generated by Ablated is equivalent to the code generated by
Expresso and therefore worse than Cortado. In two other cases (PausableThreadPoolExecutor
and ProgressTracker), Ablated generates code different from both Expresso and Cortado. For
PausableThreadPoolExecutor, the code generated by Ablated is slower than that of Expresso
because many of the operations it parallelizes are very cheap, so the overhead of extra locks
outweighs their benefit. On the other hand, our static analysis detects several safe interleavings
which enable Cortado to synthesize a protocol with cheaper synchronization operations. Finally,
for the remaining three cases, the code generated by Ablated matches the one generated by
Cortado. This ablation study demonstrates that the safe interleaving analysis from Section 4.3
helps extract additional concurrency on five of our benchmarks.

6.2 Synthesis Time & Protocol Complexity
To evaluate the cost and complexity of synthesizing code with Cortado (RQ4), Table 1 summarizes
its running time and presents some statistics about the synthesized protocols. For each benchmark,
we report the running time for the various phases of the tool: pointer analysis with Soot, signal
placement with Expresso, and synthesis with Cortado. We also report the number of locks and
atomic fields in the synthesized protocol.
Table 1 shows that Cortado terminates in under one minute for all but two benchmarks. For

these two outliers, the synthesis time is dominated by Expresso’s monitor invariant inference,
which is necessary for signal placement. Overall, Cortado is able to extract better performance
than Expresso alone with only a small additional compile-time cost.

The last three columns in Table 1 provide statistics about the synthesized explicit monitors. Most
monitors benefit from Cortado’s ability to introduce atomic fields, which reduces the overhead of
operations on monitor state that would otherwise require a lock. The lines of code (LOC) results
show that Cortado synthesizes explicit monitors that are on average 1.7× larger than their implicit
specifications.

7 RELATEDWORK
Monitor abstractions. The notion of monitors as an organizing abstraction for concurrent program-

ming originates with Hoare [1974] and Hansen [1973]. Monitors offer the same synchronization

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:23

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

16

128

1024

8192

0 50 100
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

ArrayBlockingeue

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

8

64

512

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

ConcurrencyThrottleSupport

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

128

512

2048

8192

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

CountableThreadPool

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

32

512

8192

24 16 24 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

JobWrapper

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

32

128

512

2048

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

PausableThreadPoolExecutor

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

64

256

1024

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

ProgressTracker

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

4

16

64

256

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

RealmThreadPoolExecutor

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

64

512

4096

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

RoundTripWorker

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

32

256

2048

16384

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

SinkQueue

of

 c
or

es
 =

 5
6

of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

256

1024

4096

24 8 16 32 48 64 80 96 112 128
of threads

m
s/

op

Ablated
Original
Expresso
Cortado

WSDataListener

Fig. 9. Performance Results For All Tools. The y-axis is in log scale and time measurements are in milliseconds.

The shadowed regions surrounding each line present 99.9% confidence interval of each measurement.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

67:24 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

facilities as semaphores—the ability to coordinate multiple threads and enforce mutual exclusion—
but encapsulate the state protected by those facilities and automate mutual exclusion when entering
and exiting the monitor’s operations. Lampson and Redell [1980] further extended the monitor
abstraction in the Mesa programming language to handle spurious wake ups.
These early monitor abstractions are explicit-signal monitors in the taxonomy of Buhr et al.

[1995] because they require the programmer to explicitly insert condition variables and signalling
operations to coordinate threads within the monitor. This requirement places both a safety and a
liveness burden on the programmer: they must place signals correctly to preserve invariants about
the monitor’s state, but must also insert enough signals to avoid deadlock. An alternative is to use
an implicit-signal (or automatic-signal) monitor, in which signals are inserted automatically by the
compiler, language runtime, or operating system. Hoare [1971] proposed the notion of conditional
critical regions (CCRs), which allow for monitor operations to block until a guard predicate over
the monitor state is satisfied by some other thread. A CCR implementation would automatically
block and signal threads in a fashion consistent with this guard semantics.
Implicit-signal monitors simplify concurrent programming, but come at a steep performance

cost—Buhr et al. [1995] estimate that implicit-signal monitors are 10–50× slower than explicit ones.
More recent work has tried to lower the cost of implicit-signal monitors. AutoSynch [Hung and Garg
2013] uses a combination of compile-time instrumentation and run-time evaluation to efficiently
compute which threads should be woken when monitor state changes. This approach lowers the
cost of implicit monitors to be close to, or sometimes better than, explicit ones. Expresso [Ferles et al.
2018] takes a different approach, using compile-time static analysis to synthesize an explicit-signal
monitor equivalent to an implicit-signal version given as input. In this way, Expresso is able to
erase the dynamic cost of implicit-signal monitors, and in most cases is comparable to hand-written
explicit monitors. However, Expresso uses a single lock for the entire monitor and does not allow
concurrent execution of threads within the monitor even when safe. Our work expands on this
direction by using a richer static analysis to infer additional concurrency opportunities and uses
MaxSAT to synthesize a safe and efficient locking protocol. Hence, our key contribution is to
synthesize an explicit monitor that appears to match the semantics of the implicit one, but runs
monitor operations concurrently when possible and efficient. As we show in the evaluation, our
proposed approach can often make the synthesized monitor faster than a hand-written equivalent.

Automatic synchronization. An appealing approach to lower the difficulty of concurrent pro-
gramming is to deploy program analysis and synthesis techniques for automation. The common
abstraction for much of this work is for the programmer to annotate atomic sections that should
be executed atomically. Emmi et al. [2007] present a technique for lock allocation to an annotated
program. They reduce the problem to integer linear programming and deploy the resulting tool
on large-scale C and Java programs. Other approaches [Halpert et al. 2007; Hicks et al. 2006; Mc-
Closkey et al. 2006], on the other hand, take a purely static analysis route and attempt to maximize
parallelism based solely on the results of the analysis. Cherem et al. [2008] present an alternative
technique that uses runtime support to enable finer-grained concurrency. Compared to these efforts,
Cortado applies to the more limited domain of monitors, but in exchange for this limitation is
able to reason about conditional signalling and can allow atomic sections to run concurrently so
long as the illusion of atomicity is maintained.
Other approaches start from a sequential program and automatically generate an equivalent

concurrent program. The closest work to ours in this space is that of Golan-Gueta et al. [2011]
which generates concurrent data structures given their sequential implementation. Compared to
our method, their approach is applicable only to data structures that satisfy certain shape properties

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 67:25

and all synthesized programs adhere to the same locking protocol, whereas Cortado generates a
synchronization protocol specialized to the input monitor.

Concurrency verification. Cortado reasons about concurrent program executions by building on
work in concurrent program analysis and verification. Our notion of left- and right-commutativity
(Definition 4.11) comes from Lipton’s work on reduction as a concurrency proof technique [Lipton
1975]. Reduction translates interleaved program executions to simpler, equivalent sequential execu-
tions by exploiting the commutativity properties of individual program steps. We use the same
idea but in reverse: starting with a sequential history (Definition 3.7), we use a static analysis of
commutativity to determine how to safely introduce interleavings into that history, and use that
information to determine how to assign locks to program fragments.

8 CONCLUSION
We presented a technique for synthesizing fine-grained synchronization protocols for implicitly
synchronized monitors. Our approach first employs a novel static analysis to identify safe inter-
leavings opportunities between code fragments and uses the results of this analysis to generate a
MaxSAT encoding whose solution can be used to synthesize an efficient and correct-by-construction
explicit-synchronization monitor. We have implemented our method in a tool called Cortado and
evaluated its effectiveness eight monitors collected from popular open source applications. The
results of our experimental evaluation demonstrate that Cortado is able to generate non-trivial
synchronization protocols that are 3.7× times faster than the original implementation on average
(and up to 39.1× times for some outliers).

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers, Shankara Pailoor, and BenjaminMariano for their
insightful feedback. This material is based upon work supported by the National Science Foundation
under Grant Numbers CCF-1918889 and #CCF-1811865, the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Department of Energy Computational
Science Graduate Fellowship under Award Number SC0021110, and a gift from Relational AI.

REFERENCES
Noga Alon. 1986. Covering graphs by the minimum number of equivalence relations. Combinatorica 6, 3 (Sep 1986), 201–206.

https://doi.org/10.1007/BF02579381
Andrew D Birrell. 1989. An introduction to programming with threads. Digital Systems Research Center, Palo Alto, California.
Peter A. Buhr, Michel Fortier, and Michael H. Coffin. 1995. Monitor Classification. ACM Comput. Surv. 27, 1 (mar 1995),

63–107. https://doi.org/10.1145/214037.214100
Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. 2008. Inferring Locks for Atomic Sections. SIGPLAN Not. 43, 6 (jun

2008), 304–315. https://doi.org/10.1145/1379022.1375619
Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and

Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.
Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. 2007. Lock allocation. In Proceedings of the 34th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007.
Association for Computing Machinery, New York, NY, USA, 291–296. https://doi.org/10.1145/1190216.1190260

Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig. 2022. Synthesizing Fine-Grained
Synchronization Protocols for Implicit Monitors (Extended Version). (2022). arXiv:2203.00783 [Computer Science]

Kostas Ferles, Jacob Van Geffen, Isil Dillig, and Yannis Smaragdakis. 2018. Symbolic Reasoning for Automatic Signal
Placement. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 120–134. https:
//doi.org/10.1145/3192366.3192395

GitHub. 2022. GitHub REST API. https://docs.github.com/en/rest
Guy Golan-Gueta, Nathan Bronson, Alex Aiken, G. Ramalingam, Mooly Sagiv, and Eran Yahav. 2011. Automatic Fine-Grain

Locking Using Shape Properties. SIGPLAN Not. 46, 10 (oct 2011), 225–242. https://doi.org/10.1145/2076021.2048086

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

https://doi.org/10.1007/BF02579381
https://doi.org/10.1145/214037.214100
https://doi.org/10.1145/1379022.1375619
https://doi.org/10.1145/1190216.1190260
https://arxiv.org/abs/2203.00783
https://doi.org/10.1145/3192366.3192395
https://doi.org/10.1145/3192366.3192395
https://docs.github.com/en/rest
https://doi.org/10.1145/2076021.2048086

67:26 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas. 2015. SeaHorn: A Framework for Verifying C Programs Competition
Contribution. In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis

of Systems - Volume 9035. Springer-Verlag, Berlin, Heidelberg, 447–450. https://doi.org/10.1007/978-3-662-46681-0_41
Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge. 2007. Component-Based Lock Allocation. In Proceedings

of the 16th International Conference on Parallel Architecture and Compilation Techniques (PACT ’07). IEEE Computer
Society, USA, 353–364.

Per Brinch Hansen. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs, New Jersey.
Michael Hicks, Jeffrey S Foster, and Polyvios Pratikakis. 2006. Lock inference for atomic sections. InOn-Line Proceedings of the

First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for Transactional Computing (TRANSACT).
http://www.cs.purdue.edu/homes/jv/events/TRANSACT/transact-06.tgz

C. A. R. Hoare. 1971. Towards a theory of parallel programming. In Operating Systems Techniques, Proceedings of a Seminar

at Queen’s University, Belfast. Springer-Verlag, Belfast, Northern Ireland, 231–244.
C. A. R. Hoare. 1974. Monitors: An Operating System Structuring Concept. Commun. ACM 17, 10 (oct 1974), 549–557.

https://doi.org/10.1145/355620.361161
Wei-Lun Hung and Vijay K. Garg. 2013. AutoSynch: An Automatic-Signal Monitor Based on Predicate Tagging. SIGPLAN

Not. 48, 6 (jun 2013), 253–262. https://doi.org/10.1145/2499370.2462175
Butler W. Lampson and David D. Redell. 1980. Experience with Processes and Monitors in Mesa. Commun. ACM 23, 2 (feb

1980), 105–117. https://doi.org/10.1145/358818.358824
William Landi and Barbara G. Ryder. 1992. A Safe Approximate Algorithm for Interprocedural Aliasing. SIGPLAN Not. 27, 7

(July 1992), 235–248. https://doi.org/10.1145/143103.143137
Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (dec 1975),

717–721. https://doi.org/10.1145/361227.361234
Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. 2006. Autolocker: Synchronization Inference for Atomic Sections.

In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston,
South Carolina, USA) (POPL ’06). Association for Computing Machinery, New York, NY, USA, 346–358. https://doi.org/
10.1145/1111037.1111068

T. S. Michael and Thomas Quint. 2006. Sphericity, Cubicity, and Edge Clique Covers of Graphs. Discrete Appl. Math. 154, 8
(may 2006), 1309–1313.

Aleksey Shipilev, Sergey Kuksenko, Astrand Astrand, Staffan Freiberg, and Henrik Loef. 2021. OpenJDK: jmh. http:
//openjdk.java.net/projects/code-tools/jmh/

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot-a Java bytecode
optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative research.
IBM Press, Mississauga, Ontario, Canada, 13.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 67. Publication date: April 2022.

https://doi.org/10.1007/978-3-662-46681-0_41
http://www.cs.purdue.edu/homes/jv/events/TRANSACT/transact-06.tgz
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/2499370.2462175
https://doi.org/10.1145/358818.358824
https://doi.org/10.1145/143103.143137
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/1111037.1111068
https://doi.org/10.1145/1111037.1111068
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

	Abstract
	1 Introduction
	2 Overview
	2.1 Implicit-Synchronization Monitor
	2.2 Explicit-Synchronization Monitor
	2.3 Our Approach

	3 Preliminaries
	3.1 Background on Monitors
	3.2 Source Language
	3.3 Target Language
	3.4 Relating Implicit and Explicit Histories
	3.5 Correctness of Explicit-Synchronization Monitors

	4 Main Algorithm
	4.1 Fragment Dependency Graphs and NP-Completeness
	4.2 Synthesis Algorithm
	4.3 Analysis to Identify Safe Interleavings
	4.4 MaxSAT Encoding

	5 Implementation
	6 Evaluation
	6.1 Performance Results
	6.2 Synthesis Time & Protocol Complexity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

