Verifying Correct Usage of Context-Free API Protocols

KOSTAS FERLES, The University of Texas at Austin, USA
JON STEPHENS, The University of Texas at Austin, USA
ISIL DILLIG, The University of Texas at Austin, USA

Several real-world libraries (e.g., reentrant locks, GUI frameworks, serialization libraries) require their clients to
use the provided API in a manner that conforms to a context-free specification. Motivated by this observation,
this paper describes a new technique for verifying the correct usage of context-free API protocols. The key idea
underlying our technique is to over-approximate the program’s feasible API call sequences using a context-free
grammar (CFG) and then check language inclusion between this grammar and the specification. However,
since this inclusion check may fail due to imprecision in the program’s CFG abstraction, we propose a novel
refinement technique to progressively improve the CFG. In particular, our method obtains counterexamples
from CFG inclusion queries and uses them to introduce new non-terminals and productions to the grammar
while still over-approximating the program’s relevant behavior.

We have implemented the proposed algorithm in a tool called CFPCHECKER and evaluate it on 10 popular Java
applications that use at least one API with a context-free specification. Our evaluation shows that CFPCHECKER
is able to verify correct usage of the API in clients that use it correctly and produces counterexamples for those
that do not. We also compare our method against three relevant baselines and demonstrate that CFPCHECKER
enables verification of safety properties that are beyond the reach of existing tools.

CCS Concepts: « Software and its engineering — Software verification; » Theory of computation —
Grammars and context-free languages.

Additional Key Words and Phrases: Context-Free API Protocols, Program Verification, Abstraction Refinement

ACM Reference Format:
Kostas Ferles, Jon Stephens, and Isil Dillig. 2021. Verifying Correct Usage of Context-Free API Protocols. Proc.
ACM Program. Lang. 5, POPL, Article 17 (January 2021), 30 pages. https://doi.org/10.1145/3434298

1 INTRODUCTION

Over the last decade, there has been a flurry of research activity on checking the correct usage of
APIs [Aldrich et al. 2009; Arzt et al. 2015; Bierhoff and Aldrich 2007; Bierhoff et al. 2009; Fink et al.
2008; Joshi and Sen 2008; Lam et al. 2004; Pradel et al. 2012a]. Despite significant advances in this
area, almost all existing verification techniques focus on typestate analysis [Strom and Yemini 1986],
which requires the API protocol to be expressible as a regular language. In reality, however, several
APIs have context-free —rather than regular— specifications. For instance, almost all reentrant lock
APIs require calls to lock to be balanced by a corresponding call to unlock. Similarly, many APIs
provide functionality for saving and restoring internal state, and it is an error to call restore more
times than the corresponding save function. As a final example, in APIs for structured document
formats (e.g., JSON), the usage of the library needs to conform to the underlying context-free

Authors’ addresses: Kostas Ferles, The University of Texas at Austin, USA, kferles@cs.utexas.edu; Jon Stephens, The
University of Texas at Austin, USA, jon@cs.utexas.edu; Isil Dillig, The University of Texas at Austin, USA, isil@cs.utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART17

https://doi.org/10.1145/3434298

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

https://doi.org/10.1145/3434298
https://doi.org/10.1145/3434298

17:2 Kostas Ferles, Jon Stephens, and Isil Dillig

document specification. All of these examples are instances of context-free API protocols, and
incorrect usage of such APIs typically results in run-time exceptions or resource leaks.

Motivated by this observation, prior research has developed run-time techniques for specifying
context-free properties and monitoring them during program execution [d’Amorim and Havelund
2005; Jin et al. 2012; Martin et al. 2005; Meredith et al. 2010]. However, there has been very little (if
any) work on statically verifying conformance between a program and a context-free API protocol.
In this paper, we present a new verification technique that addresses this problem. In particular,
given a specification expressed as a parameterized context-free grammar (CFG) Gs and a program
P using that API, our method automatically checks whether or not # conforms to protocol Gs.
However, solving this problem introduces two key technical challenges that motivate the novel
components of our solution: First, we need to prove that the program satisfies the API protocol for
all, potentially infinite, relevant objects created by the input program. To address this challenge, we
propose a novel program instrumentation that transforms the input program so it uses the same
vocabulary as Gs and ensures that if the transformed program conforms to the API protocol so
does the original. Second, because such APIs are often used in recursive procedures, it is important
to reason precisely both about inter-procedural control flow as well as feasible API call sequences.
Since both of these properties, namely matching call-and-return structure as well as the target API
protocol, are context-free, standard program analysis techniques, such as CFL reachability [Reps
et al. 1995] or visibly pushdown automata [Alur and Madhusudan 2004], do not address our problem.
Instead, we reduce the context-free protocol verification problem to that of checking inclusion
between two CFGs! and propose a counterexample-guided abstraction refinement (CEGAR) approach
for checking whether every feasible execution of the program belongs to the grammar defined by
the protocol (see Figure 1).

The heart of our technique consists of a novel abstraction mechanism that represents the input
program ¥ as a context-free grammar Gp, whose language L(Gp) defines $’s feasible API call
sequences. The productions R of this grammar model relevant API calls as well as intra- and inter-
procedural control-flow. For instance, a production such as L; — fL, indicates that API method f
is called at program location L; and that L, is a successor of L. In addition, productions precisely
model inter-procedural control flow and enforce that every call statement must be matched by its
corresponding return.

While the CFG extracted from the program is always sound, it may be imprecise due to data
dependencies that are not captured by the current CFG productions. That is, if an API call sequence
w is feasible in some program execution, then w is guaranteed to be in L(Gyp); however, the
membership of w in £(Gp) does not guarantee the feasibility of the corresponding API call sequence.
Our verification approach deals with this potential imprecision by using a novel abstraction
refinement technique that iteratively improves the program’s CFG abstraction until the property
can be either refuted or verified.

In more detail, our approach works as follows: First, given context-free protocol Gs and current
program abstraction Gp, we query whether there exists a word w that is in G but not Gs. If not,
then the algorithm terminates with a proof of correctness. Otherwise, our method reconstructs
the corresponding program path 7 associated with w and checks its feasibility using an SMT
solver. If 7 is indeed feasible, then so is the call sequence w, and our method terminates with a real
counterexample. Otherwise, w must be a spurious counterexample caused by imprecision in the
CFG. In this case, our algorithm refines the CFG abstraction by computing a proof of infeasibility of
7 in the form of a nested sequence interpolant [Heizmann et al. 2010]. Similar to many other software

!While inclusion checking between two CFGs is undecidable, many problems of practical interest can be solved by existing
tools.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:3

CFPChecker

Abstractor

Spec

Program Verified

(checker l > Refuted

Fig. 1. Overview of verification approach

model checkers, the interpolant drives the refinement process inside the CEGAR loop; however,
unlike other techniques, our approach uses the interpolant to figure out which new non-terminals
and productions to add to the grammar. In essence, these new non-terminals correspond to “clones”
of existing program locations and allow us to selectively introduce both intra- and inter-procedural
path-sensitivity to our CFG-based program abstraction.

We have implemented our proposed verification algorithm in a prototype called CFPCHECKER
for Java programs and evaluated it on 10 widely-used clients of 5 popular APIs with context-free
specifications. Our evaluation demonstrates that CFPCHECKER is able to verify correct usage of the
API in clients that use it correctly and produces counterexamples for those that do not. We also
implement and evaluate three baselines that reduce the problem to assertion checking and then
discharge these assertions using existing tools. Our experiments demonstrate that CFPCHECKER
is practical enough to successfully analyze real-world Java applications and that it enables the
verification of safety properties that are beyond the reach of existing tools.

In summary, this paper makes the following contributions:

e We propose a novel CEGAR-based verification algorithm for verifying correct usage of context-
free API protocols.

o We describe a new CFG-based program abstraction that over-approximates feasible API call
sequences.

e We propose a new refinement method that selectively and modularly adds path-sensitivity to the
program abstraction by introducing new non-terminals and productions.

e We evaluate our method on widely-used clients of popular Java APIs with context-free spec-
ifications and demonstrate that our proposed approach is applicable to real-world software
verification tasks.

2 MOTIVATING EXAMPLE

In this section, we give a high level overview of our approach through a simple motivating example.
Consider a re-entrant lock API that requires every call to lock on some object o to be matched by
the same number of calls to unlock on o. This property is context-free but not regular because it
requires "counting" the number of calls to lock and unlock. In our framework, the user can specify
this property using the following parametrized context-free grammar Gs:

S — € | $1.lock() S $1.unlock() S (1)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

void foo(Lock 1){

Kostas Ferles, Jon Stephens, and Isil Dillig

static Lock $1 = x;

void foo(Lock 1){

2 if (%) { 4 if (%) {

3 acquire(l); 5 acquire(l);

4 foo(l); 6 foo(l);

5 release(l); 7 release(l);

6 } 8 }

7} s

8 10

9 void acquire(Lock 11){ 1 void acquire(Lock 11){
10 11.1ock(); 12 if (11 == $1)

n 13 $1.1ock();

12

14

15

void release(Lock 12){
12.unlock();
3

(a) Original Program

3

void release(Lock 12){
if (12 == $1)
$1.unlock();

19}

(b) Transformed Program

Fig. 2. Motivating Example

This CFG is parametrized in the sense that it uses a "wildcard" symbol $1 that matches any object
of type Lock. Thus, the specification requires that, for every object o, each call 0. 1lock() must be
matched by a call to o.unlock().

To illustrate our technique, Figure 2(a) shows a very simple client of this Lock API. Here, foo
is a recursive procedure that calls 1.1ock before every recursive call to foo and calls 1.unlock
afterwards. Since the receiver object is the same before and after the call, the specification from
Equation 1 is satisfied. In the remainder of this section, we explain how our technique verifies
correct usage of the Lock API in this example.

The first step in our technique is to automatically instrument the program from Figure 2(a) so
that API calls in the program involve the same wildcard symbol $1 used in the specification. The
instrumented version is shown in Figure 2(b), which uses a new global variable called $1 (i.e., the
wildcard symbol in the grammar) and replaces every call to x.lock() (resp. x.unlock()) with the
conditional invocation if(x = $1) $1.lock() (resp. if(x = $1) $1.unlock()). Intuitively, the goal
of this instrumentation is two-fold: First, it ensures that the CFG abstraction of the program uses
the same "vocabulary” (i.e., terminals) as the specification CFG. Second, it deals with challenges
that arise from potential aliasing between pointers.

In the next step, our method extracts a context-free grammar that over-approximates the relevant
API call behavior of the program. Towards this goal, we represent the program as a mapping
from each function to a predicated control-flow automaton (PCFA) that will be iteratively refined
as the algorithm progresses. At a high level, a PCFA captures control-flow within a method while
also maintaining a mapping from program locations to a set of logical predicates. For example,
Figure 3 shows the initial PCFAs for Figure 2(b): here, nodes correspond to program locations,
and edges correspond to transitions. Observe that the PCFAs from Figure 3 contain a single node
for each program location; hence, these PCFAs look like standard control flow automata (CFA)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:5

1lacq = 1; call acquire; leoo = ; call foo; 12re1 = 1;

oy

ue}
I3 Ja f5 fe
s

assume (true) ;

assume (true) ; call release;

(a) Initial PCFA for foo.

assume (11 == $1); $1.1lock(); assume (12 == ; $1.unlock();

11 = 1lacy;

@

ao ai assume (11 != $1);

12 = 12ve1;

as ro 1 T3

assume (12 !'= $1);

(b) Initial PCFA for acquire. (c) Initial PCFA for release.

Fig. 3. Initial PCFAs for input program. The PCFAs contain additional formal-to-actual assignments.

Foo — %y

o i

F1 > F|Ts Acquire — Ay Release — R,

F — T3 Ay — Ay Ro — R,

Fs — Acquire F4 A - Ay | A R, — Ry |R

Fs — F Ay — $1.1ock() A3 R; - $12. unlsock() Ry
Fs — Foo F A — € Ry — ¢

7o -

F, — Release F3

Fs — €

Fig. 4. Initial context-free grammar.

used in software model checking [Heizmann et al. 2010; Reps et al. 1995]. However, the PCFA
representation diverges from a standard CFA as the algorithm proceeds. In particular, the PCFA
can contain multiple nodes for the same program location and allows our method to selectively
introduce path-sensitivity to the program abstraction.

Given these initial PCFAs, our method programmatically extracts from them a context-free
grammar over-approximating the program’s feasible API call sequences. In particular, Figure 4
shows the initial CFG abstraction for our example. Here, non-terminals (e.g., 71, As2) correspond
to nodes (e.g., f1, az) in the PCFAs, and terminals (e.g., $1.1ock()) denote API calls. Additionally,
there is one non-terminal symbol (e.g., Foo, Acquire) for each method. The productions in the
CFG are obtained directly from the PCFA by ignoring all statements that are not function calls:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:6 Kostas Ferles, Jon Stephens, and Isil Dillig

..]:f-c;c;.-;.-i.;. > t,r,ue
oo LEPRRRPINS > true
l assume (true);
fo llacq=l- » true
| _
J1
J
Ja
1
| Fi~r,
Acquire l \Jjﬁ\fs
.,éll Foo F7
lo }-O Release
/lll | 7%0
Aa P
T A ¢

N

$1.lock(); € € €

(a) Parse Tree.

(b) Trace & Interpolants.

Fig. 5. Tree and Trace for Counterexample $1.1lock().

For example, the production A; — $1.1lock() As comes from the PCFA edge from a; to as. In
addition, the CFG productions faithfully and precisely model inter-procedural control flow. For
instance, the production ¥3 — Acquire ¥4 models the call from Foo to Acquire and As — ¢
models its corresponding return.

Next, our method checks inclusion between the grammar Gp extracted from the program and
API protocol Gs. While this problem is, in general, undecidable, we have found the resulting CFG
inclusion checking problems to be amenable to automation by modern tools. Going back to our
running example, the language of Gp from Figure 4 is not a subset of the language of Gs — for
example, the word $1.1ock() can be generated using Gp but not Gs. This means that either the
program actually misuses the API or the current abstraction is imprecise. In order to determine
which one, our method maps the word $1.1ock() to an execution path of the program. Towards this
goal, we first obtain the parse tree from Figure 5a that shows how $1.1lock() can be derived from
Gp. This derivation corresponds precisely to the program path, shown in Figure 5b. Furthermore,
observe that this path goes through the “then” branch of the if statement in method acquire and
the “else” branch in method release. However, this path is clearly infeasible, so we need to refine
Gy to eliminate the spurious derivation.

Our method refines the program’s CFG abstraction by adding new non-terminals and productions
to the grammar. Towards this goal, we first refine the PCFA abstraction by selectively cloning some
program locations, with the goal of introducing path-sensitivity where needed. The cloning of PCFA
nodes is driven by an interpolation engine that computes a sequence of nested interpolants [Heizmann
et al. 2010]. In particular, the right-hand side of Figure 5b shows the interpolants computed for

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:7

lfoo = 1; call foo; 121 = 1;

ST

fa f5 fé

call acquire;

G

call release;

call foo; 12.a1

ST T

call release;

2

call acquire;

assume (true) ;

fs

(a) Refined PCEFA for foo.

$1.lock($1.unlock (
e
assume (11 == $1) assume (12 ==
= llacq/ 12 = 12ve1;
4. $1.unlock();
To
assume (11 != assume (12 !'= $1);
as

(b) Refined PCFA for acquire. (c) Refined PCFA for release.

$1) ;

U

Fig. 6. Refined PCFAs for input program.

each program location for our running example. Intuitively, "tracking" these predicates at the
corresponding program location would allow us to remove the spurious trace. Thus, in the next
iteration, we generate the new PCFAs shown in Figure 6 by cloning all PCFA nodes that correspond
to program locations in the counterexample. Observe that the refined PCFAs contain multiple
nodes (e.g., f1, f,) for the same program location, and the predicates in the PCFA correspond to
those that appear in the interpolant. For instance, even though nodes 3, r; both represent the
same program location, one is annotated with predicate [2,.; # $1, whereas r; is annotated with
12,¢; = $1. Furthermore, the refined PCFA contains an edge between two nodes iff the semantics
of the statement labeling that edge are consistent with the annotations of the source and target
nodes. For instance, there is an edge from node a; to a3 but not from a; to a; because the predicates
geq =11, 114c4 = $1 labeling a; and a; are inconsistent with the statement assume(11 != $1).
Given this new PCFA representation, our verification algorithm extracts the refined grammar
Q’P shown in Figure 7. As before, we construct the grammar based on PCFA edges; however, note
that there are two different sets of grammar rules for each of the methods acquire and release. In
general, for a given function f, our technique introduces as many non-terminals for f as there are

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:8 Kostas Ferles, Jon Stephens, and Isil Dillig

Foo — %y

Fo — F Releaseg, — Ry, 4,

Fi > F|Fs Acquirey — HAo,g, Ro, 4, = Ri,4,

Fo = s Ao, = Arg, Ri.gs = Ra.p,

F3 — Acquirey T4 Ar,g, = Az, Ra., — $1.unlock) R}
| Acqui}’€¢2 ¥ Az, — $1.1ock() ﬂé"ﬁl Ré g€

fo = Ap g € w

- T .

Fs — Foo F¢ Releases, — Ry, 4,

¥, — Foo ¥/ Acquire¢2 — Ao, 4, Ro, 4. = Ri,4,

Fo — F1 Ao, p, = Arg, Ri.gs = Ra.g,

7:6' — ?‘7’ \7{15452 - ﬂ3’¢2 Rl,qﬂ — R3’¢4

F7 — Releasey, T3 Az, — € R4, = $1.unlock() R3¢,

¥, — Rleaseg, T R, 9, — €

Fs — €

Fig. 7. Refined CFG, where ¢1 = {l1qcq = $1}, ¢2 = {{1gcq # $1}, 3 = {12,¢; = $1}, and ¢4 = {12,; # $1}.

Releaseg, — Ry g,

R0,¢3 - R1,¢3
$1.unlock () ;
R1,¢3 - R2,¢3
12,0 = $1}
assume (12 == $1); ' R2,¢3 — $1.unlock() Ré’¢3
. ’
T -
12 = 12,01 3 R3,¢3 €

o Releasey, — Ro, ¢,
assume (12 != $1);
720,‘,754 - Rl,@

R1,¢4 - R3,¢4
(a) Second refined PCFA for method release. R34, — €

(b) Refined grammar for Release.

Fig. 8. Refined PCFA and grammar for method release (second iteration).

PCFA nodes for f’s exit location. This strategy allows our verification algorithm to lazily perform
"method cloning", thereby introducing inter-procedural path-sensitivity where needed. For instance,
observe that there are two non-terminals (Acquire¢1, Acquire¢z) representing acquire in Figure 7,
and predicates ¢1, ¢, correspond to the predicates [14cq = $1, [14.4 # $1 labeling nodes a3 and a;
in the PCFA from Figure 6(b). Furthermore, observe that there are two different sets of grammars
for Acquirey and Acquire,,, and each grammar is generated by looking at the portion of the PCFA
that is backwards reachable from the corresponding exit node. For example, there is no production
Ay, g, — Ay ¢, in Figure 7 because node a; is not backwards reachable from the exit node labeled
with ¢, in Figure 6(b).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:9

Class C := class C { fld*m" }

Field fld := f:Tt=¢|staticf:1=e

Method m == void m(v) {s*;}

Stmt s == skip |si;s2 |v:=e|v.f :=e|assume(p) | if (p) {s1} else {s2}|v:=newC
| call v.m(?)|api_call v.m(v)

Expre:== v|v.f|c|*|e1 ©ez, 0 € {+,—, X}

Predp:=ce|-p|pi Ap2|p1Vp2 |e1 Dey, @€ {<,> =}

Fig. 9. Input Language.

In the second iteration, our algorithm again checks inclusion between the two grammars, namely
G, and Gs. This time, G, is still not contained in G, and the new counterexample is $1.unlock(),
whose derivation corresponds to a program path that goes through the “else” branch in acquire
and “then” branch in release. In this case, the culprit is the PCFA edge between nodes r; and r3 in
method release (Figure 6¢), which can again be eliminated by computing nested interpolants and
cloning node r;.

In the next and final iteration, our algorithm can now prove that the language defined by the
program’s CFG is indeed a subset of the specification Gs, and the algorithm terminates with a
proof of correctness. The final abstraction is identical to the one from previous iteration except for
method release whose final PCFA and context-free grammar are shown in Figure 8.

3 PROBLEM STATEMENT

In this section, we introduce context-free API protocols and formally define our problem in the
context of a simple object-oriented programming language.

3.1 Input Language

Figure 9 presents the programming language used for our formalization. In this language, a class
consists of a set of field declarations followed by a set of method definitions. Fields can be either
object-specific (declared as f : 7) or static, meaning they are shared between all instances of the
class. Statements include standard constructs like assignment, load, store, etc. We differentiate
between two kinds of call statements, namely call which is a call to a regular method defined in
the same program and api_call which invokes a method defined by a third-party API. We assume
that the source code of third-party libraries are not available for analysis; thus, we require any side
effects of API calls to be modeled using stub methods. In particular, we assume that each call to an
API method foo in the original program has been replaced by a stub foo_stub that invokes foo and
captures its side effects via assignment. Thus, in the remainder of the paper, we assume, without loss
of generality, that API calls have no side effects on program state.

For the purposes of this paper, a program state ¢ is a mapping from program variables (V) and
field references (V X F) to an integer value. We use the notation (s, o) || ¢’ to indicate that ¢’ is
the resulting state after executing statement s on program state . Furthermore, we use sp(s, P) to
denote the strongest postcondition of statement s with respect to the first-order logic formula P. A
program trace, 7 = (s1, 01), {S2, 02), ..., {Sn, On), is a sequence of (statement, program state) pairs
such that (s;, ;) | 0i41.2 Given a program P, we write Traces(P) to denote the (infinite) set of
traces that can arise during executions of P.

2We assume that program traces are in SSA form. That is, each re-definition of a program variable is assigned a unique
name within the trace.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:10 Kostas Ferles, Jon Stephens, and Isil Dillig

3.2 Context-Free API Protocols

We express API protocols using a (parametrized) context-free grammar Gs = (T, N, R, S) where
each terminal ¢ € T is of the form “api_call $iy.m($iz, ..., $ip)”, n € N is a non-terminal, R
is a set of productions, and S is the start symbol. Given grammar Gs, we write T, to denote the
subset of terminals involving a call to method m. As mentioned in Section 2, each $i; is a so-called
wildcard that can match any value of the appropriate type. To omit explicit type declarations, we
assume the existence of a typing oracle I" that returns the type of a wildcard w, and, as standard,
we use the notation T’ + w : T to indicate that w is of type T. We also define a function to extract all
wildcard symbols that appear in the grammar:

Definition 3.1. (Wildcard extractor, ‘W) Given a context-free protocol Gs = (T, N, R, S), we
write ‘W(Gs) to denote the set of all wildcard symbols that appear in Gs.

3.3 Semantic Conformance to API Protocol

Intuitively, a program % conforms to a parametrized CFG specification Gs if it satisfies the spec for
every possible instantiation of the wildcards in Gs. To make this statement more precise, we first
introduce the notion of an instantiated API protocol:

Definition 3.2. (Instantiated spec) Given an API specification Gs, we say that G is an instan-
tiation of Gs, written G € Inst(Gs), if it can be obtained from Gs by substituting every wildcard
symbol w; € ‘W(Gs) with a concrete value of the appropriate type.

Next, to determine if a program trace 7 conforms to an instantiated specification G, we will
check “inclusion” of the trace in the language defined by G. To this end, we convert the trace to a
word over the terminal symbols in G using the following TraceToWord function:

Definition 3.3. (Trace-to-Word) Let 7 be a trace and let G = (T, N, R, S) be an (instantiated) API
protocol. We define TraceToWord(z, G) as follows®:

TraceToWord(t,G) = [| s’ € T, (s,) € 1, s’ = s[c(D)/T], ¥ = Vars(s)]
Example 3.4. Consider the following trace z:
7 = (11 = new Lock, o1), {(11.1ock(), 02), {(11.unlock(), 03),
(12 = new Lock, 04), {12.1ock(), o5), {12.unlock(), o¢)

and suppose that 01, 0, refer to the addresses of the first and second allocated Lock objects respec-
tively. Now, consider the following instantiated spec G:

A

G =S — €]o1.lock() S oy.unlock() S
Then, we have:
TraceToWord(z, G) = [o1.1ock(), 01.unlock()]

Observe that the generated word “ignores” all statements other than API calls (e.g., new Lock).
Furthermore, since variable 12 has value o, rather than o4, the last two lock/unlock statements in
the trace are also not included in the result.

3We use the notation [s | ...] to describe a filter operation on the input trace. The output preserves the relative order of
statements in the input trace.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:11

T = {t1, ..t} gi = guard(t;,s)
s"=1if (g1) t1 ... else if(gx) tx

(API) - =
I,Gs +s =api_call v.m(0) < s’
(Seq) I[LGstsi—s T,Gsksy s,

e

1 I,Gs + 51582 = s7; 85

an ILGstsi—s I,Gsts;—s,
T,Gs F if(p) {s1} else{sy} — if(p) {s;} else {s;}
T, Fses
(Method) DGsksms
I, Gs + void m(0){s} < void m(v){s’}
(Class) wi € W(Gs) Trwi:t; f/=staticw;:T;=% I,GsFm; —>m]

ILGstclass C{ fi... fu mi...mg Yy > class C { fi... fn f] fj’ mj ... m;c 3

Fig. 10. Rules for instrumenting program P for a given specification Gs = (T, N, R, S). For statements that
are not shown, we have T, Gs + s < s, and the definition of guard function is inlined in text.

Definition 3.5. (Semantic conformance) Given a program # and a context-free API protocol
Gs, P semantically conforms to Gs if and only if the following holds:

V1 € Traces(?’).\v’g € Inst(Gs). TraceToWord(t, g) € L(Q) (2)

In other words, a program P satisfies Gs if it satisfies the protocol for all possible instantiations
of the wildcards in Gs for every program trace.

4 PROGRAM INSTRUMENTATION

In the previous section, we defined conformance of a program to an API protocol in terms of
all possible program traces and all possible instantiations of the wildcard symbols. While this
strategy allows us to formally state the problem, it does not lend itself to a verification algorithm
since there are infinitely many possible instantiations of the wildcard symbols as well as infinitely
many program traces. Thus, rather than checking the containment of each trace in all possible
instantiations of the parametrized CFG, our strategy is to instead generate a CFG encoding all
possible traces of the program as well as all possible instantiations of the wildcard symbols and
then check inclusion between this CFG and the specification grammar. Towards this goal, we
first instrument the program with new fields that are initialized non-deterministically and that
can be used to capture all possible values of the wildcards in the specification. In addition, our
instrumentation deals with challenges that arise from potential aliasing between different arguments
to API calls.

In more detail, Figure 10 describes our program instrumentation using judgments of the form
[,Gs + s — s’, where s’ corresponds to the transformed version of s.

Class. The top-level rule labeled “Class” introduces a static field for every wildcard symbol that
appears in Gs and initializes it to a non-deterministic value. It also instruments each method within
this class.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:12 Kostas Ferles, Jon Stephens, and Isil Dillig

Method, Seq, If. These three rules reconstruct the statement after recursively transforming the
statements nested inside them.

APIL This rule is the core of our program instrumentation and ensures that each terminal symbol
in the specification grammar has a (syntactically) corresponding API call statement while being
semantically equivalent to the original API call. As shown in Figure 10, this rule transforms an
API call s to library method m to an if-then-else statement. Specifically, the rule iterates over all
the terminals ¢, € T, in Gs and generates an if statement for each terminal t; conditioned upon
the wildcard symbols matching the variables used in s. To achieve this goal, we make use of an
auxiliary guard function defined as follows:

guard(ty,s) = /\$ikj =
J

Here, $;k is the sequence of wildcards used in t; and @ is the sequence of variables used in s. Thus,
given an API call s and a set of terminals T,,,, we generate the following code:

if$in=v1 A ... ASigp=un){t1}

else if($ig;=ov1 A ... A Sign=vn) {tr}

Hence, our instrumentation ensures that API calls syntactically use the wildcard symbols in the
grammar while preserving program behavior relevant to the specification.
The following theorem states the correctness of our instrumentation:

THEOREM 4.1. Let P be a program and Gs a context-free API protocol. If we have T', Gs + P — P’
and P’ semantically conforms Gs, then so does P.

Proor. The proofs of all theorems can be found in the extended version of the paper [Ferles
et al. 2020]. O

Observe that the above theorem only states the soundness, but not completeness, of our pro-
gram instrumentation. Completeness does not hold for arbitrary parametrized CFGs. For example,
consider the API protocol: Gs — $1.f() $2.9(), where $1 and $2 have different types, and the
code fragment “v1.f() v2.g()”. This fragment clearly conforms to the API protocol, however, our
instrumentation would produce the following output:

$1 = *; $2 = %;
if (vl == $1) $1.fQ);
if (v2 == $2) $2.gQ);

The instrumented program does not satisfy the API protocol because it generates the words
“$1.£()” and “$2.g()” that do not belong in L(Gs). Such protocols typically do not occur in practice
because such examples refer to relationships between methods defined in different classes, so this
is no longer a protocol for a single APL

However, completeness does hold if all terminals in the grammar use the same set of wildcards.
In practice, every API protocol we have encountered conforms to this restriction.

5 VERIFICATION ALGORITHM

Our verification algorithm takes as input a program that has been instrumented as described in
Section 4. The main idea underlying the algorithm is to extract a context-free grammar from the
instrumented program and iteratively refine this CFG abstraction until the property is either refuted

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:13

or verified. Since our algorithm operates over predicated control flow automata (PCFA), we start
with a discussion of PCFAs and then describe our CEGAR-based verification approach.

5.1 Predicated Control-Flow Automata

We represent each program using a generalized form of control flow automaton (CFA) that is
commonly used in software model checking [Heizmann et al. 2013; Henzinger et al. 2004a, 2002]. A
CFA is a directed graph where nodes correspond to program locations, and an edge from n to n’
labeled with s indicates that the program transitions from location n to n” upon the execution of
statement s. Predicated control flow automata (PCFA) augment CFA nodes with logical predicates:

Definition 5.1. (PCFA) A predicated control-flow automaton A is a tuple A = (X, S, §) where:

e X is the set of atomic program statements.

e Sis a set of states, where each s € Sis a pair s = (I, ¢). Here, I, is a program location within
method m, and ¢ is a formula over some first-order theory.

e J is the transition relation § C SX X X S.

Notation. Given a state s = (I, ¢), we use Loc(s) and Pred(s) to denote [and ¢ respectively.
Trans(A) denotes the transition relation of A. We use the notation SLI = {s € S | Loc(s) = I} to
represent the subset of states in S that involve program location . In addition, we write In(l, &)
(resp. Out(l, §)) to denote the in-coming (resp. out-going) edges of location of I Finally, we say that
state s’ is reachable from state s, denoted as A + s ~ s’, if and only if (s, _, s”) € . As standard, we
use A + s ~* s’ to represent the transitive closure of relation ~».

5.2 Main Algorithm

Figure 11 presents our top-level verification algorithm. This procedure takes as input an (in-
strumented) program P, represented as a mapping from methods to their PCFAs, as well as a
context-free API protocol Gs. The algorithm either returns “Verified” or a counterexample indicat-
ing an API misuse. As a convention, procedure names in small caps are formally defined later in
this paper, whereas those in camel case are oracles that provide functionality that is orthogonal to
our approach.

The main verification algorithm is a CEGAR loop that consists of the following steps. First, it
calls procedure CoNsTRUCTCFG (line 6) to obtain a context-free grammar Gp that abstracts the
relevant API usage of . Next, it checks whether there exists a word w that belongs in £(Gp) but
not in £(Gs) (line 7). If this is not the case, the program must satisfy Gs, so the algorithm returns
“Verified” (line 14).

On the other hand, if there exists a word w € L(Gp)\L(Gs), we need to check whether w
corresponds to a feasible execution path of . Given a derivation d of w, we convert this derivation
to an execution path using an oracle called derivationZpath (line 8). Here, we represent an execution
path as a nested trace [Heizmann et al. 2010], which is a tuple (7 = 0y...0p,, ~) where 7 is a sequence
of program statements and ~- is a so-called "nesting relation" between indices of & that associates
matching call and return statements. That is, if i ~~ j, then o; is a return statement and o; is its
matching call statement. Given such a nested trace, we can easily check whether r is feasible by
encoding it as an SMT formula and querying its satisfiability (line 9). If the path is feasible, then
the algorithm returns 7 as a witness of API misuse.

In case 7 is infeasible, then word w is a spurious counterexample, and our algorithm refines
the PCFA abstraction (lines 11-13) to eliminate the same spurious counterexample in the next
iteration. To this end, we first make use of another oracle, Interpolant, which takes as input a nested
word (7 = 0y...0n, ~) and returns an inductive sequence of nested interpolants I = [I, ..., I,+1].
Following Heizmann et al. [2010], we define nested interpolants as a sequence of predicates with

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:14 Kostas Ferles, Jon Stephens, and Isil Dillig

1: procedure VERIFY(P, Gs)

2: input: £ : M — PCFA, program.

3: input: G5, API-Protocol’s context-free grammar.
4: output: Verified or Counterexample.

5 while true do

6: Gp «— CoNSTRUCTCFG(P)

7: if 3d. d € InclusionCheck(Gp, Gs) then

8: (m, ~~) « derivation2path(d)

9 if feasible((r,~~)) then return x

10: else

11: I « Interpolant((x, ~~))
Ijel,ojem

12: ¥ {lm - {I] | Loc(o)) = by }}

13: P « REFINE(P,¥)

14: else return Verified

Fig. 11. Verification Algorithm

the following properties: (1) Iy = true, I,+; = false. (2) If o; is not a return statement, then
sp(0i,I;) = Iit1. (3) If 0y is a return statement, then sp(oy, I; A I;) = I;1q and j ~> i. Intuitively, the
first property ensures that I can be used to prove infeasibility of (i, ~~), whereas the latter two
properties ensure that I is inductive.

After calculating a nested interpolant, the algorithm builds a mapping ¥ that groups interpolants
by program location (line 12). That is, ¥ maps each program location to a set of predicates that
should be tracked at that location. The REFINE procedure uses ¥ to determine how to clone program
locations in the PCFAs such that (i, ~+) is no longer feasible in the refined program abstraction.

We now state the following two theorems concerning the soundness and progress of our approach:

THEOREM 5.2. (Soundness) Let P, P’ be the programs before and after the call to REFINE at
line 13 respectively. Then, for every feasible execution path m in P, there exists a derivation d €
CoNSTRUCTCFG(P’) such that (rr, ~+) = derivation2path(d).

Proor. The proofs of all theorems can be found in the extended version of the paper [Ferles
et al. 2020].)

THEOREM 5.3. (Progress) Let t be a spurious counterexample returned by derivation2path and let
P’ be the resulting program after calling REFINE on program P. Then, there does not exist a derivation
d € CoNSTRUCTCFG(P’) such that t = derivation2path(d).

Proor. The proofs of all theorems can be found in the extended version of the paper [Ferles
et al. 2020]. o

In the following subsections, we describe the REFINE (Section 5.3) and CoNsTRUCTCFG (Sec-
tion 5.4) procedures in more detail.

5.3 PCFA Refinement

Our PCFA refinement algorithm is summarized in Figure 12. Given program # and mapping ¥
from locations to predicates, the idea is to "clone" any program location [€ dom(¥) based on the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:15

1: procedure REFINE(P, V)

2: input: £ : M — PCFA, program.

3: input: ¥ : Loc — {Pred}, new predicates to track.
4: output: Refined program with respect to ¥

for (I, Preds) € ¥ do

(%,S,68) « P[m]

® « CompleteCubes(Preds)

S’ « CloneStates(S, I,,, @)

&’ « UpdateTransitions(J, Iy, S’ 1y)
10: Plm] « (%,5,5)
11: return P

R A

Fig. 12. Program Refinement Algorithm.

predicates ¥(I). Intuitively, the demand-driven cloning of program locations allows our method
to be selectively path-sensitive and removes infeasible program paths encountered in previous
iterations. Furthermore, our refinement algorithm is modular in the sense that we can refine the
PCFA of each method independently.

In more detail, the REFINE procedure iterates over each program location [€ dom(¥) and
determines which new states to create in the PCFA. Specifically, if ¥(I) contains n new predicates,
then, for each state (I, ¢) in the PCFA, we need to create 2" new states, where each clone represents
a copy of [under a different boolean assignment to the predicates in ¥(I). Towards this goal, the
REeFINE procedure first invokes CompleteCubes (line 7) to generate a different boolean assignment
as follows:

|P|
CompleteCubes(P) = {/\c,- | c¢i € {pi»—pi},pi € P}

i=1

In other words, CompleteCubes(P) yields a set ® of (conjunctive) formulas such that every ¢ € ®
corresponds to a different boolean assignment to the predicates in P.

Next, given the new set of predicates ® to track at location I, the procedure CLONESTATES (line 8)
generates |®| clones of each state (I, ¢) € S as follows:

CloneStates(S, [, ®) = (S\ SI)) U {(LoA¢') | (Lp) €S, ¢" € D}

In other words, CloneStates removes all existing states (I, §) associated with location [and then
adds a new state (I, ¢ A ¢”) for each ¢’ € ®@. Thus, if the PCFA contains n states for location [before
refinement, then the refined PCFA contains n X |®| states for location [.

Example 5.4. Consider the initial PCFA for method acquire from Fig. 3b and suppose ¥(a3) =
P = {l14.4 = $1}. In this case, we have ® = CompleteCubes(P) = {l14cq = $1,[14cq # $1}. Thus,
CloneStates removes the original state (as, true) and generates two new states (as, [14c4 # $1) and
(a3, 114cq = $1) as shown in Figure 6.

After creating the new states S’, the REFINE procedure updates the transition relation of the
PCFA by invoking the UpdateTransitions function (line 9), defined as follows:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:16 Kostas Ferles, Jon Stephens, and Isil Dillig

1: procedure CoNsTRUCTCFG(P)
2: input: £ : M — PCFA, program.
3 output: Gp, context-free grammar that abstracts P.
(T,N,R) < (0,0,0)
O «— {(s,m) | s € Exit(P[m])}
for (s;,m) € © do
(T;, Ni, R;, S;) < GENGRAMMAR(P[m], s;, ©)
T « TUT,', N<—NUN,', R<—RUR,'
if IsMain(m) then S « S;
10: return (T, N, R, S)

B

Y ® 2

Fig. 13. Context-Free Grammar Construction

UpdateTransitions(8, [, S") = § \ (In(6, I) U Out(4, 1)) U
{e=(s,0,5")|s" €8,(s,0,_) € In(6, 1), feasible(e)} U
{e=(s",0,5)|s" €S ,(_,0,s) € Out(8,), feasible(e)}

where feasible((si, 0, s2)) is defined as SAT (sp(o, Pred(s1)) A Pred(sz)). In other words, UpdateTran-
sitions first removes from § all transitions involving location I Then, for each new state s’ € §” and
for each incoming edge (s, o, _) to location [, it adds a new edge (s, 0,s’) as long as the annotation
of the new state s’ is consistent with the annotation of the source node, Pred(s), and the semantics
of statement o. Outgoing edges from location [are also updated analogously.

Example 5.5. Consider again the new states at the end of method acquire. Observe that Update-
Transitions will not add an edge between states a;,a; and a,,as3 in the refined version of the PCFA
(shown in Fig. 6b) because feasible returns false for these edges.

5.4 Context-Free Grammar Construction

In this section, we describe how to extract a context-free grammar from the PCFAs. As explained
earlier, the main idea is to represent relevant API invocations as terminals in the grammar so that
words generated by the CFG correspond to all possible sequences of API calls issued by the program.
Towards this goal, we introduce one non-terminal symbol for each PCFA state and generate CFG
productions according to the PCFA transitions. The resulting CFG abstraction is (selectively) path-
sensitive in that we introduce as many non-terminal symbols for a method as it has exit states.
Intuitively, different non-terminals for method m correspond to different "summaries" conditioned
upon facts that hold at m’s call sites.

The ConsTRUCTCFG procedure is described in more detail in Figure 13. It generates the program’s
CFG abstraction by iterating over every exit state s of each method m and constructs a separate
grammar for (s, m) using the call to GENGRAMMAR at line 7. The CFG for the whole program is
obtained as the union of all of the individual grammars, and the start symbol for Gp is the one
associated with main.

Figure 14 summarizes the GENGRAMMAR procedure using inference rules of the following shape:

ﬂ,c,@l—Al,...,An

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:17

(s,0,s") € Trans(A) —callStmt(c) Ars’~*c Pred(c) = ¢

1
W A, {8y, Sp} SN Sy > S €Re
@ (s,0,s") € Trans(A) o =api_call m(B) Ars’ ~*c Pred(c) = ¢
A, OF{Sp. S} ENc 0 €T Sp >0 S, €Re
feasible(e, ¢’) Pred(c) = ¢
3 e=(s,0,8') €Trans(A) o =call (@) (c/,m)e® Ars ~*c ¢ =Pred(c)
A, 0F{Sp.Sp} ENe Sy — M(’p, S, € R
. s € Entry(A) Ars~*c ¢ = Pred(c) 5) ¢ = Pred(c)
(4) A,c,Or My, >SS, e€Re My,eN, Sc=M, A,c,0rCyp > €E€ER,

Fig. 14. Rules for constructing CFG = (T¢, N¢, Re, S¢) given a exit state ¢ in PCFA A = (2, S, §), and set ©. For
a PCFA state s with predicate ¢, the symbol S, denotes the corresponding non-terminal in the grammar.

Here, the left-hand side of the turnstile represents the arguments of the GENGRAMMAR procedure,
and each A; is a set inclusion constraint for the CFG symbols and productions. In more detail, A is
the PCFA for the current method, c is an exit state in A, and © is a set of pairs (s, m) where s is an
exit state in method m’s PCFA. (As we will see shortly, GENGRAMMAR uses © to generate grammar
productions for method calls.) Given a state s in the PCFA and predicate ¢ labeling exit state c,
GENGRAMMAR generates a non-terminal S, for each state in the PCFA.

Statements. The first rule in Figure 14 applies to all statements that are not function calls. Since
atomic statements other than API calls are not relevant to our abstraction, this rule only captures
control-flow dependencies. Specifically, let (s, o, s”) be a PCFA edge where o is a non-call statement.
First, we introduce non-terminals S, S(;, for states s, s” and add a production S, — S(;, to capture
that s’ is a successor of s. Observe that this rule (as well as the next two rules) have A + s’ ~* c as
a premise because non-terminals S, S, should only be added to the grammar if s, s” are backward-
reachable from exit state c.

Example 5.6. The production A; g, — A, ¢, in Fig. 7 is generated using the Stmt rule based on
the PCFA from Fig 6.

APIL The next rule generates productions for API calls. This rule is similar to the previous one but
with two key differences: First, it also adds o to terminals T,. Second, it generates the production
Sy — 0§, instead of S, — S, because o is relevant to the program’s API usage.

Example 5.7. Consider the production Az 4, — $1.1lock() A; b from Figure 7. This production
is generated due to the PCFA transition (az, $1.1ock(), a;) from Figure 6.

Call. The third rule applies to PCFA edges (s, 0, s”) where o is a call to method m’. Since there
are multiple "clones" of m’, let us consider one specific clone ¢’ with "summary" ¢’. In this case,
we generate the production S, — M’ ,S’,,, where M’ is the start symbol for the grammar
associated with this clone of m’. However, since predicate ¢’ may be inconsistent with PCFA
transition (s, o, s”), we first check whether this particular clone of m’ is feasible at this call site. This
is done by requiring feasible(e, ¢’), defined as follows:

feasible((s, call m’ (3),s’), ¢") = SAT(Pred(s) A Pred(s") A ¢")

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:18 Kostas Ferles, Jon Stephens, and Isil Dillig

Example 5.8. Consider the PCFAs from Figure 6. Here, the production 3 — Acquire(;, 51,54
belongs to Gp because we have feasible(e, [1,.4 = $1) for the PCFA edge e from f3 to f;. On the
other hand, there is no production 3 — Acquire{llacq:m}ﬂ' because [1,cq = INL # $1A 1144 = $1
is unsatisfiable.

Entry and exit. The last two rules in Figure 14 deal with the entry and exit states of the PCFA.
Specifically, for any entry state s of the PCFA that is backward-reachable from the target exit state
¢, we add a production M, — S,, where M,, corresponds to the start symbol of the grammar. For
exit state ¢, we just add the empty production C, — e.

Example 5.9. For the PCFA from Figure 6b, we add the production Acquire; — Ay, ¢, because ao
is an entry state that is backward-reachable from state aj. Similarly, we add a production A; 6 €
for exit state a;.

6 IMPLEMENTATION

We implemented our approach in a prototype called CFPCHECKER for analyzing Java programs.
CFPCHECKER is implemented in Java on top of the Soot infrastructure [Vallée-Rai et al. 1999]
and uses the technique of Madhavan et al. [2015] to perform grammar inclusion checks. Our
implementation also makes use of SMTInterpol [Christ et al. 2012] to obtain nested interpolants
and leverages Z3 [De Moura and Bjerner 2008] to determine satisfiability.

In the remainder of this section, we discuss some design choices and optimizations that were
omitted from the technical presentation.

Slicing input programs. Before running the verification algorithm presented in Section 5, CF-
PCHECKER uses slicing to improve scalability. Specifically, we first identify all calls to the API whose
usage is being checked and then compute a backward slice of the program with respect to those
statements [Sridharan et al. 2007; Weiser 1981].

From words to execution paths. As mentioned in Section 5, we assume that the InclusionCheck
method returns a derivation d € Gp for a word w € L(Gp) \ L(Gs). In practice, Gp tends to
be highly ambiguous, so obtaining such a derivation for w can be computationally expensive. To
address this issue, we first convert Gy to Chomsky Normal Form (CNF) [Chomsky 1959] for which
there is a polynomial algorithm for obtaining a derivation [Hopcroft 2008], and we then map
this derivation back to the original grammar. While mapping the CNF derivation to the original
grammar is not polynomial time, we have found this strategy to work much better in practice
compared to directly searching for a derivation in the original grammar.

Handling pointers. In our implementation, we model the heap by using a fairly standard array-
based encoding that has been popularized by ESC-Java [Flanagan et al. 2002]. Specifically, we
introduce an array for each field and model loads and stores using select and update functions in
the theory of arrays.

Obtaining PCFAs. Before generating the PCFA of a method, we first perform a program transfor-
mation similar to the one described by Ball et al. [2005] to enable polymorphic predicate abstraction.
Specifically, for each method in the program, we generate auxiliary variables, referred to as symbolic
constants in prior work, that track the initial value of variables on method entry. This transformation
allows computing polymorphic interpolants that can be reused across call sites.

Optimizations. Rather than introducing one non-terminal symbol for every program location,
we instead introduce one non-terminal for each basic block in order to make the resulting context-
free grammar smaller. Also, since the refinement algorithm may issue an exponential number of

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:19

satisfiability queries, we issue SMT queries in parallel whenever possible and memoize the results
of Z3 queries. Finally, since mapping parse trees from the CNF grammar back to the original version
can be a performance bottleneck, we memoize partial results between refinement iterations.

Limitations. Similar to other verification tools, CFPCHECKER models several Java features (e.g.,
exceptions, reflection) in a “soundy” way [Livshits et al. 2015]. Furthermore, since CFPCHECKER
models program semantics using the combined theory of arrays and linear integer arithmetic, it
also conservatively over-approximates operations that fall outside of this theory. In particular,
CFPCHECKER introduces appropriate uninterpreted functions to model operations that involve
non-integer variables (e.g., floats, doubles, etc.).

7 EVALUATION

To evaluate CFPCHECKER, we collected real-world use cases of Java APIs and conducted experiments
designed to answer the following research questions:

RQ1: Can CFPCHECKER verify the correct usage of popular Java APIs in real-world clients?
RQ2: Does the proposed technique advance the state-of-the-art in software verification?

To answer these questions, we conduct two sets of experiments. For our first experiment, we
collect five popular Java APIs with context-free specifications and evaluate CFPCHECKER on 10
widely-used Java programs that leverage at least one of these five APIs. In our second experiment,
we compare CFPCHECKER against existing verification tools. However, since there is no off-the-
shelf technique that can directly verify correct usage of context-free API protocols, we instrument
(simplified versions of) these 10 Java programs with suitable assertions that enforce correct API
usage, and we then try to discharge these assertions using state-of-the-art verification and model
checking tools.

All of our experiments are run on an Intel Xeon CPU E5-2640 v3 @ 2.60GHz machine with 132
GB of memory running the Ubuntu 14.04.1 operating system.

7.1 API Specifications & Benchmarks

For our evaluation, we consider the following five popular Java APIs whose correct usage is defined
by a context-free specification:

(1) ReentrantLock: a widely-used Java API that implements a reentrant lock

(2) WakeLock: a popular Android API that allows the client application to keep the Android
device awake

(3) WifiLock: another Android API that allows the applications to keep the Wi-Fi radio awake

(4) Canvas: a graphics API (also for Android) that allows clients to create views and animations

(5) JsonGenerator: a serialization library that allows serializing Java objects as JSON documents

Specifications. Table 1 presents the context-free protocols that clients of these APIs must adhere
to. As used as a running example throughout the paper, ReentrantLock requires calls to acquire
and release to be balanced, and failure to follow this protocol results in deadlocks. The next two
APIs, namely WakeLock and WifilLock, have the exact same specification and can be used in two
different modes of operation, reference-counted and non-reference-counted. The specification for
the first mode is the same as ReentrantLock (i.e., each call to acquire must be matched by a call to
release). On the other hand, the second mode is enabled by the call setRefCnt(false) and requires
the usage pattern to be of the form acquire™ release™ where m < nandn > 1 — m > 1. For
both the WakeLock and WifiLock APIs, failure to follow the protocol causes resource leaks (e.g., the
application drains the phone’s battery). For the Android Canvas API, its documentation states "It is
an error to call restore() more times than save() was called.”; thus, its specification is of the form

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:20 Kostas Ferles, Jon Stephens, and Isil Dillig

Table 1. Java API Protocol Specifications

API Name Specification
ReLock S l-’ §1~acqu1re()S$1.re1ease()5

S — RC | $1.setRefCnt(false) NC

NC — €| NAS$l.release()
Wifi & Wake Lock NA — $l.acquire() NA$l.release() NA| $l.acquire() NA
| $1.acquire()

RC — $l.acquire() RC $1.release() RC | €
S — e|$l.save() S$l.restore() S

Canvas | $1.save() S
S — €| Obj|Arr|$1.writeString()
| $1.writeNumber() | $1.writeBoolean()
Obj — $l.writeStartObject() Fld $1.writeEndObject()
Json Gen.

Fld — $1lwriteFieldName() S Fid|e

Arr — $lwriteStartArray() Vals $1.writeEndArray()

Vals — ¢€|SVals

save” restore™ where m < n. Failure to follow this protocol results in a run-time exception. The
last API, called JsonGenerator, has a relatively complex specification and requires clients to call API
methods (e.g., writeStartObject(), writeEndObject(), etc.) in accordance with the JSON schema,
that is, calls that start (e.g., writeStartObject()) and end (e.g., writeEndObject()) a JSON element
must be matched and properly nested. Failure to follow this protocol results in the generation of
invalid JSON files.

Clients. To evaluate our approach on realistic usage scenarios of these libraries, we collected
ten open-source Java programs that use these APIs. The clients used in our evaluation are widely-
used programs such as Hadoop/MapReduce (a distributed computing framework), ExoPlayer (an
Android media player), ConnectBot (secure shell client), Netflix Hystrix (a fault tolerance library
for distributed environments), etc. These applications contain an average of 571 classes and 36,390
lines of Java code (equivalently, 56,114 Soot bytecode instructions). Recall that we first slice the
input program before we run any of the verifiers (Section 6). The effectiveness of slicing varies
across different benchmarks with the resulting slices containing between 3-126 classes.

7.2 Results for CFPChecker

Table 2 summarizes our main experimental results for CFPCHECKER. As we can see from the "Out-
put” column, two of the benchmarks (namely, ExoPlayer and ConnectBot) actually misuse at least
one API. For these benchmarks (indicated with the / symbol), we also construct a correct variant
(indicated without the 4 symbol) by manually repairing the original bug. We now summarize the
key take-away lessons from this evaluation.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:21

Table 2. Results for CFPCHECKER. Under the “output” column, "Cex" denotes a counterexample and "Safe"
indicates that the benchmark was verified. Total time indicates end-to-end running time in seconds, and
“Incl. check” shows the time spent performing grammar inclusion checking queries. “# Steps”: number of
refinement steps, “Preds / BB”: Average and max predicates tracked per basic block, “# Preds”: total number
of predicates tracked.

Benchmark Info CFPCHECKER Statistics
Total Incl. Preds / BB
Benchmark # #P
enchmar Output Time Check Steps (Avg/Max) reds
=) ExoPlayer (4) Cex 63.8 0.3 27 2/6 40
2 || ExoPlayer Safe 35.2 0.4 20 1/4 44
4 ExoPlayer (4) Cex 66.6 0.3 24 2/6 40
3 ExoPlayer Safe 47.0 0.5 20 2/6 39
£ || ConnectBot (4) || Cex 3920 93 42 3/9 107
= ConnectBot Safe 2336.5 18.3 48 3/12 133
4 Hystrix Safe 20.7 0.3 9 1/3 21
S || Guice Safe 221.5 2.4 25 3/9 92
& Bitcoinj Safe 3175.3 28.0 79 1/5 115
" Glide Safe 562.6 544.7 8 1/3 19
s RxTool Safe 56.4 43.8 1 1/1 3
& || Litho Safe 144 05 5 13 1
- Hadoop Safe 140.2 64.5 49 1/4 65
2 Hystrix-1 Safe 64.4 2.7 48 2/4 62
™ || Hystrix-2 Safe 24.2 0.6 31 1/4 55

Verification results for correct benchmarks. CFPCHECKER is able to successfully verify all benchmarks
that correctly use the relevant API. On average, CFPCHECKER takes 9.3 minutes to verify each
application, and its median verification time is 60.4 seconds. Most of the benchmarks require a
significant number of refinement steps, with 22.5 being the median number of iterations.

Counterexamples for buggy benchmarks. As shown in Table 2, CFPCHECKER reports three API
protocol violations. Two of these violations are in ExoPlayer, which misuses both the WifiLock
and WakeLock libraries, and the other violation is in ConnectBot, which misuses WakeLock. Using
the counterexamples reported by CFPCHECKER, we were able to identify the root causes of these
errors. Interestingly, all three violations share the same root cause. In particular, ExoPlayer and
ConnectBot both call the acquire method in onStart and the corresponding release method in
onStop of an Android Activity [Documentation 2020]; however, they fail to release the lock in the
onPause method. Since the Android framework may kill a paused activity when there is memory
pressure (see Figure 15), the calls to acquire and release are not guaranteed to be matched. Thus,
this bug can result in resource leaks in the form of unintended battery usage. One simple way to fix
this issue is to move the acquire and release calls to the onResume and onPause methods instead.
In fact, a later version of the ConnectBot application fixes the bug in exactly this way; however,
CFPCHECKER identified a previously unknown issue in ExoPlayer.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:22 Kostas Ferles, Jon Stephens, and Isil Dillig

Table 3. Results for other safety-checking tools on simplified benchmarks using a time limit of 8 hours and
memory limit of 16 GB per benchmark. Values in the “Out” columns have the following meaning: Cex: feasible
counterexample found, Safe: no violations found, Unknown: unable to produce neither a counterexample nor
a proof of correctness, TO: timeout, OM: out of memory. We use a “-” to indicate that a value is not applicable.
All execution times are in seconds.

JayHorn JPF-BugFinder JPF-Verifier
Bench Out Correct Tim Out Correct i Out Correct Tim
enei ut Output? € ut Output? € ut Output? €
= ExoPlayer (4) Unknown X 12124 Safe X 0.6 TO X -
= ExoPlayer Unknown X 1119.0 - - - TO X -
4 ExoPlayer (4) Unknown X 1105.3 Safe X 0.5 TO X -
3 ExoPlayer Unknown X 1162.8 - - - TO X -
—% ConnectBot (1) || Unknown X 333.0 Safe X 0.7 TO X -
= ConnectBot Unknown X 164.0 - - - TO X -
4 Hystrix Unknown X 12530.5 TO X -
S Guice Safe v 2383.1 - - - TO X -
& || Bitcoinj oM X - - - - TO X -
" Glide TO X - - - - TO X -
g || RxTool TO X - - - - TO X -
& || Litho oM X - - - - TO X -
o Hadoop OM X - - - - TO X -
2 Hystrix-1 Safe 4 931.7 - - - TO X -
™ || Hystrix-2 OM X - - - - TO X -

Activity
launched

Summary. As these experiments indicate, verifying the \
correct usage of context-free API protocols is of prac- —
tical relevance in real-world applications. Our results onstart() 4+ onestart()
demonstrate that CFPCHECKER is practical enough to : m:m(,

verify the correct usage of context-free API protocols v

in widely-used Java applications and that it can provide © "&&” e

useful counterexamples when the property is violated.

7.3 Comparison with Baselines

User navigates
to the activity

Since there is no existing tool for verifying correct usage
of context-free protocols, we cannot directly compare our
approach against existing baselines. Thus, we construct

onDestroy ()

our own baselines using the following strategy: First, we !

instrument each program with suitable assertions that ey

enforce correct API usage (as explained below). Then,

we try to discharge these assertions using existing safety Fig. 15. Android lifecycle callbacks

verifiers. In this section, we report on our experience
implementing and evaluating these baselines using Jay-
Horn [Kahsai et al. 2016] and JavaPathFinder [Artho and
Visser 2019] as the assertion checking back-ends. Note that JayHorn is a state-of-the-art Java

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:23

verification tool based on constrained Horn clause solvers, and JavaPathFinder is a mature model
checking tool for Java developed by NASA.

Assertion instrumentation. As mentioned earlier, the goal of our instrumentation is to generate a
program P’ such that P’ is free of assertion failures if and only if the original program P obeys a
given context-free API protocol. One obvious way to perform this instrumentation is to represent
the API protocol using a push-down automaton (PDA) and then introduce variables that keep
track of the PDA’s state and stack contents. In fact, this strategy has been used in prior work
for performing run-time checking of correct API usage [Chen and Rosu 2007; Jin et al. 2012;
Meredith et al. 2010]. However, since static techniques are typically not very good at reasoning
about dynamically allocated data structures (e.g., arrays), we instead manually perform API-specific
instrumentation that avoids introducing arrays whenever possible. For example, for ReentrantLock,
we only introduce an integer counter c that is incremented (resp. decremented) on calls to lock
(resp. unlock). Then, to enforce the protocol, we assert that c is positive when unlock is called
and that it is zero at the end. Using similar strategies, we can perform instrumentation using only
integer variables for all APIs except one (JsonGenerator).

Please note that the instrumentation strategy described above requires human ingenuity and
cannot be used to automatically check arbitrary API protocols. However, it is designed to be as
favorable as possible to assertion checking tools and represents the best possible scenario for existing
verifiers.

Slicing and pre-processing. Recall from Section 6 that CFPCHECKER incorporates a slicing step
to enable better scalability. To ensure a fair comparison, we use the exact same slicing procedure
before feeding the instrumented programs to the assertion checking tools. However, even the slices
contain several features that cannot be handled by at least one of these two tools. For instance,
if we provide the generated slices to JayHorn as-is, it crashes on most benchmarks. Similarly,
JavaPathFinder throws an exception whenever it encounters a call to a method whose source code
is not available. Therefore, in order to use JayHorn and JavaPathFinder as our assertion-checking
back-ends, we further manually simplified our benchmarks from Section 7.1 in a way that preserves
the relevant API usage-related behavior.

Configurations of JavaPathFinder. The JPF tool can be configured in several different ways. In
this experiment, we use two configurations of JPF for the assertion-checking back-end. The first
variant, henceforth called JPF-BugFinder, is a version of Java Pathfinder that is configured with
the default settings for SVCOMP [Artho and Visser 2019]. Note that these settings are suitable for
bug finding but not for verification. To use JavaPathFinder as a verifier, we also consider a second
variant where we do not restrict its search space. We refer to this variant as JPF-Verifier. Since
JPF-BugFinder is not a verifier, we only evaluate it on the buggy benchmarks.

Overall results. The results of our comparison against these three baselines (JayHorn, JPF-
BugFinder, and JPF-Verifier) are presented in Table 3. The key take-away from this experiment
is that none of the three baselines are effective at successfully verifying (or finding bugs in) our
experimental benchmarks despite manual simplification and instrumentation. In what follows, we
describe the results for each of the three baselines in more detail.

Results for JayHorn. JayHorn verifies only 2 of the 15 benchmarks. For 7 benchmarks, JayHorn
reports a possible assertion violation, but is unable to provide a counterexample. For the remaining
6 benchmarks, JayHorn either fails to terminate within the 8-hour time limit or runs out of memory.
Surprisingly, one of the benchmarks (Hystrix-1) that can be verified by JayHorn uses the complex

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:24 Kostas Ferles, Jon Stephens, and Isil Dillig

JsonGenerator API. We conjecture that JayHorn can verify this benchmark more easily because it
does not involve recursion and all relevant API usage is confined within a single method.

Results for JPF. When using JPF as a bug finder with the default SV-COMP settings, it fails to
find the assertion violations in the three buggy benchmarks and reports them as safe. This result
suggests that the API protocol violations in the buggy benchmarks are non-trivial to find. On the
other hand, JPF-Verifier fails to terminate within the eight hour time limit on any benchmark, and
it also fails to find the errors in the three buggy benchmarks.

8 RELATED WORK

We now survey prior work related to this paper and highlight their differences from our approach.

Typestate analysis. Most prior work on checking correct API usage focuses on protocols that
can be expressed as a regular language [Ball et al. 2006; Fink et al. 2008; Strom and Yemini 1986].
This problem is commonly known as typestate analysis [Strom and Yemini 1986], and researchers
have proposed many different approaches to solve this problem ranging from language-based
solutions [Aldrich et al. 2009; Bierhoff and Aldrich 2007; DeLine and Fahndrich 2004; Garcia et al.
2014] to program analysis [Bodden 2010; Bodden and Hendren 2012; Fink et al. 2008] and model
checking [Ball et al. 2006; Ball and Rajamani 2001] to bug finding [Joshi and Sen 2008; Yu et al.
2018] and run-time verification [Allan et al. 2005; Chen and Rosu 2007]. Some prior works have also
proposed various generalizations of typestate properties, such as multi-object protocols [Beckman
et al. 2011; Pradel et al. 2012b].

Run-time checking for context-free properties. There have been some proposals, particularly in the
context of run time techniques, for checking correct usage of APIs with context-free specifications.
In particular, these techniques [d’Amorim and Havelund 2005; Jin et al. 2012; Martin et al. 2005;
Meredith et al. 2010] instrument the program with monitors that keep track of PDA states and
dynamically check for property violations. As shown in our experiments, such an instrumentation-
based approach does not work well for static verification.

Interface grammars. Prior work has proposed interface grammars for specifying the sequences of
method invocations that are allowed by a library [Hughes and Bultan 2008]. Given an interface
grammar for a component, this technique generates a stub that can be used to analyze clients of
that component. While this work addresses a somewhat different problem, their technique bears
similarities to our instrumentation-based baseline, which, as shown in our evaluation, does not
work well in our setting.

CEGAR. Similar to all CEGAR approaches [Clarke et al. 2000, 2003; Grebenshchikov et al. 2012;
Gurfinkel et al. 2015; Heizmann et al. 2018; Henzinger et al. 2004b, 2002, 2003], our method starts
with a coarse abstraction and iteratively refines it based on spurious counterexamples. However,
our method differs from most CEGAR-based techniques in that we abstract the program using a
context-free grammar and perform refinement by adding new non-terminals and productions to
the grammar.

Abstracting programs with CFGs. Similar to our approach, prior work on has explored abstracting
programs using context-free grammars. For example, Long et al [Long et al. 2012] use CFG inclusion
checking to prove assertions in concurrent programs; however, their approach does not refine the
program’s CFG abstraction. Instead, they use a CEGAR approach to solve the CFG inclusion checking
problem through a sequence of increasingly more precise regular approximations. Furthermore,
since they address a different problem, their CFG abstraction is quite different from ours. Another

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:25

related approach in this space is the work by Ganty et al. [2010] which also abstracts recursive multi-
threaded programs with a context-free grammar. In contrast to our work, they under-approximate
the reachable state space of recursive multi-threaded programs by generating a succession of
bounded languages that under-approximate the program’s CFG.

Interpolants. Similar to many CEGAR-based techniques [Gurfinkel et al. 2015; Henzinger et al.
2004b; McMillan 2005, 2006], our method also uses Craig interpolation to learn new predicates
when a spurious counterexample is discovered. Given an unsatisfiable formula ¢ A ¥/, a Craig
interpolant is another formula y such that ¢ = y is valid and ¥ A y is unsatisfiable. Prior work has
proposed many variants of Craig interpolation, including sequence interpolants [Henzinger et al.
2004b], tree interpolants [Blanc et al. 2013], nested interpolants [Heizmann et al. 2010], and DAG
interpolants [Albarghouthi et al. 2013]. In this paper, we leverage the notion of nested interpolants
introduced in Heizmann et al. [2010] to infer useful predicates for recursive procedures; however,
our refinement procedure uses these nested interpolants in a very different way.

Control flow refinement. Our refinement technique bears similarities to prior work on control-flow
refinement [Balakrishnan et al. 2009; Cyphert et al. 2019; Flores-Montoya and Hahnle 2014; Gulwani
et al. 2009]. Similar to CFPCHECKER, these techniques clone program locations in order to exclude
infeasible paths from their program abstraction. However, all of these techniques abstract the
program using a regular language, and, with the exception of Flores-Montoya and Héhnle [2014],
they apply control-flow refinement within a single procedure and only inside loops. On the other
hand, Flores-Montoya and Hahnle [2014] refines cost equations rather than the program abstraction.
In contrast to all of these techniques, our technique refines the CFG abstraction, performs cloning
inter-procedurally, and supports arbitrary recursion.

Directed proof generation. Directed proof generation (DPG) techniques simultaneously maintain
an under- and an over-approximation of the program and evolve them in a synergistic way [Thakur
et al. 2010]. Specifically, the under-approximation is used to find feasible counterexamples and
learn new predicates which refine the over-approximation. Conversely, the over-approximation
is used to generate proofs and guides counterexample search to paths that are more likely to fail.
Similar to our technique, DPG-like approaches [Beckman et al. 2010; Godefroid et al. 2010; Gulavani
et al. 2006; Thakur et al. 2010] annotate their control-flow representation with logical predicates
and clone program locations. Our approach differs from these techniques in the way it discovers
potential counterexamples and new predicates. In particular, CFPCHECKER performs an inclusion
check between two context-free languages in order to discover a potential API violation and uses
interpolation to discover new predicates. In contrast, DPG techniques use a combination of graph
reachability and test-case generation.

Equivalence of context-free languages. Our approach leverages prior work on checking contain-
ment between two context-free languages [Harrison et al. 1979; Korenjak and Hopcroft 1966;
Madhavan et al. 2015; Olshansky and Pnueli 1977]. While checking inclusion between arbitrary
context-free languages is known to be undecidable, prior work has studied decidable fragments,
such as LL(k) grammars [Olshansky and Pnueli 1977]. Our implementation makes use of the
algorithm by Madhavan et al. [2015], which in turn extends prior algorithms for LL grammars.
While our technique is orthogonal to checking context-free language containment, it would directly
benefit from advances and new algorithms that address this problem.

CFL reachability. CFL reachability techniques represent inter-procedural control flow using
a graph representation and then filter out paths that do not conform to valid call-return struc-
tures [Reps et al. 1995]. This formulation has been used to express several fundamental program

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

17:26 Kostas Ferles, Jon Stephens, and Isil Dillig

analyses, such as context-sensitive pointer analysis [Sridharan et al. 2005; Xu et al. 2009]. How-
ever, adding another level of sensitivity (e.g., field-sensitivity,) requires solving two separate CFL
reachability problems on the same execution path, which is known to be undecidable [Reps 2000];
hence many techniques over-approximate one of the two CFL reachability problems [Chatterjee
et al. 2017; Li et al. 2020; Spéth et al. 2019; Sridharan and Bodik 2006; Sridharan et al. 2005; Xu
et al. 2009; Zhang et al. 2013] or propose a more precise generalization of CFL reachability [Tang
et al. 2015; Zhang and Su 2017]. Similar to these techniques, we also need to reason about two
context-free properties, namely matching call-return statements and matching between calls to
API methods. However, this work addresses a somewhat different problem: instead of filtering
out execution paths that do not belong to both context-free languages, our technique verifies that
every API sequence generated by an execution path with a valid call-return structure belongs to
the context-free specification.

Visibly pushdown automata. Many model checking techniques use variants of pushdown au-
tomata, such as visibly pushdown automata (VPAs) or nested word automata (which are equally
expressive), to reason about inter-procedural control flow [Alur and Madhusudan 2004; Chen and
Wagner 2002; Esparza et al. 2003; Henzinger et al. 2002]. Visibly pushdown and nested word au-
tomata are less expressive compared to PDAs; however, they enjoy various decidability and closure
properties for operations like intersection and complement. However, VPAs cannot capture two
separate context-free properties on the same execution path, which is required by our technique.

There have been some theoretical studies that extend VPAs to use multiple stacks [Carotenuto
et al. 2007; Torre et al. 2007; Torre et al. 2013], and such multi-stack VPAs are significantly more
expressive compared to standard VPAs. For example, 2-VPAs [Carotenuto et al. 2007] (i.e., VPAs
with two stacks) accept some context-sensitive languages that are not context-free and some
context-free languages that are not accepted by any VPA. We believe that it would be possible
to solve the problem addressed in this paper using 2-VPAs, however, the emptiness problem for
2-VPAs is also undecidable.

9 CONCLUSION

We presented a technique for verifying the correct usage of context-free API protocols. Our approach
abstracts the program as a context-free grammar representing feasible API call sequences and
checks whether this CFG is contained inside the specification CFG. Our method follows the CEGAR
paradigm and lazily refines the CFG by introducing new productions and non-terminals that
represent clones of methods and program locations.

We implemented the proposed method in a tool called CFPCHECKER and performed an experimen-
tal evaluation on 10 widely-used Java applications that utilize at least one of 5 popular APIs with
context-free specifications. Our evaluation shows that CFPCHECKER can verify all correct usage
patterns while finding counterexamples for the buggy clients. We also implement and evaluate
three baselines that reduce this problem to assertion checking and then use oft-the-shelf safety
checking tools to discharge these assertions. Our experience with these baselines suggests that our
method is more amenable to automation than alternative approaches that reduce the problem to
assertion checking.

ACKNOWLEDGMENTS

We would like to thank our shepherd Pierre Ganty, the anonymous reviewers, Kenneth McMillan,
Swarat Chaudhuri, and the members of the UToPiA group for their insightful feedback. This work
is supported in part by NSF Award #1453386 and DARPA Award #FA8750-20-C-0208.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

Verifying Correct Usage of Context-Free API Protocols 17:27

REFERENCES

Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and Marsha Chechik. 2013. UFO: verification with interpolants and
abstract interpretation. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 637-640.

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009. Typestate-oriented programming. In Proceedings
of the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages and applications.
ACM, 1015-1022.

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha Kuzins, Ondrej Lhotak, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble. 2005. Adding trace matching with free variables to Aspect]. In
OOPSLA.

Rajeev Alur and Parthasarathy Madhusudan. 2004. Visibly pushdown languages. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing. ACM, 202-211.

Cyrille Artho and Willem Visser. 2019. Java Pathfinder at SV-COMP 2019 (Competition Contribution). In Tools and Algorithms
for the Construction and Analysis of Systems, Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen (Eds.).
Springer International Publishing, Cham, 224-228.

Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and Mira Mezini. 2015. Towards secure integration
of cryptographic software. In 2015 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!). ACM, 1-13.

Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivanci¢, and Aarti Gupta. 2009. Refining the Control Structure of
Loops Using Static Analysis. In Proceedings of the Seventh ACM International Conference on Embedded Software (EMSOFT
'09). ACM, New York, NY, USA, 49-58. https://doi.org/10.1145/1629335.1629343

Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K
Rajamani, and Abdullah Ustuner. 2006. Thorough static analysis of device drivers. ACM SIGOPS Operating Systems
Review 40, 4 (2006), 73-85.

Thomas Ball, Todd Millstein, and Sriram K. Rajamani. 2005. Polymorphic Predicate Abstraction. ACM Trans. Program. Lang.
Syst. 27, 2 (March 2005), 314-343. https://doi.org/10.1145/1057387.1057391

Thomas Ball and Sriram K Rajamani. 2001. Automatically validating temporal safety properties of interfaces. In Proceedings
of the 8th international SPIN workshop on Model checking of software. Springer-Verlag, 103-122.

Nels E Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In European
Conference on Object-Oriented Programming. Springer, 2—26.

Nels E Beckman, Aditya V Nori, Sriram K Rajamani, Robert] Simmons, Sai Deep Tetali, and Aditya V Thakur. 2010. Proofs
from tests. IEEE Transactions on Software Engineering 36, 4 (2010), 495-508.

Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased objects. ACM SIGPLAN Notices 42, 10
(2007), 301-320.

Kevin Bierhoff, Nels E Beckman, and Jonathan Aldrich. 2009. Practical API protocol checking with access permissions. In
European Conference on Object-Oriented Programming. Springer, 195-219.

Régis Blanc, Ashutosh Gupta, Laura Kovacs, and Bernhard Kragl. 2013. Tree interpolation in vampire. In International
Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer, 173-181.

Eric Bodden. 2010. Efficient hybrid typestate analysis by determining continuation-equivalent states. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 5-14.

Eric Bodden and Laurie Hendren. 2012. The Clara framework for hybrid typestate analysis. International Journal on Software
Tools for Technology Transfer 14, 3 (2012), 307-326.

Dario Carotenuto, Aniello Murano, and Adriano Peron. 2007. 2-visibly pushdown automata. In International Conference on
Developments in Language Theory. Springer, 132-144.

Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017. Optimal Dyck reachability for data-dependence
and alias analysis. Proceedings of the ACM on Programming Languages 2, POPL (2017), 30.

Feng Chen and Grigore Rosu. 2007. Mop: An Efficient and Generic Runtime Verification Framework. In Proceedings of the
22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications (OOPSLA '07). ACM,
New York, NY, USA, 569-588. https://doi.org/10.1145/1297027.1297069

Hao Chen and David Wagner. 2002. MOPS: an infrastructure for examining security properties of software. In Proceedings
of the 9th ACM conference on Computer and communications security. ACM, 235-244.

Noam Chomsky. 1959. On certain formal properties of grammars. Information and control 2, 2 (1959), 137-167.

Jurgen Christ, Jochen Hoenicke, and Alexander Nutz. 2012. SMTInterpol: An Interpolating SMT Solver. In Model Checking
Software, Alastair Donaldson and David Parker (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 248-254.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-guided abstraction
refinement. In International Conference on Computer Aided Verification. Springer, 154-169.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

https://doi.org/10.1145/1629335.1629343
https://doi.org/10.1145/1057387.1057391
https://doi.org/10.1145/1297027.1297069

17:28 Kostas Ferles, Jon Stephens, and Isil Dillig

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003. Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM (JACM) 50, 5 (2003), 752-794.

John Cyphert, Jason Breck, Zachary Kincaid, and Thomas Reps. 2019. Refinement of Path Expressions for Static Analysis.
Proc. ACM Program. Lang. 3, POPL, Article 45 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290358

Marcelo d’Amorim and Klaus Havelund. 2005. Event-based Runtime Verification of Java Programs. In Proceedings of the
Third International Workshop on Dynamic Analysis (WODA ’05). ACM, New York, NY, USA, 1-7. https://doi.org/10.1145/
1082983.1083249

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. Tools and Algorithms for the Construction and
Analysis of Systems (2008), 337-340.

Robert DeLine and Manuel Fahndrich. 2004. Typestates for objects. In European Conference on Object-Oriented Programming.
Springer, 465-490.

Android Developers Documentation. 2020. https://developer.android.com/guide/components/activities/activity-lifecycle.
Accessed: 2020-07-03.

Javier Esparza, Antonin Kucera, and Stefan Schwoon. 2003. Model checking LTL with regular valuations for pushdown
systems. Information and Computation 186, 2 (2003), 355-376.

Kostas Ferles, Jon Stephens, and Isil Dillig. 2020. Verifying Correct Usage of Context-Free API Protocols (Extended Version).
arXiv:cs.PL/2010.09652

Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in the
presence of aliasing. ACM Transactions on Software Engineering and Methodology (TOSEM) 17, 2 (2008), 9.

Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg Nelson, James B Saxe, and Raymie Stata. 2002. Extended static
checking for Java. ACM Sigplan Notices 37, 5 (2002), 234-245.

Antonio Flores-Montoya and Reiner Héhnle. 2014. Resource Analysis of Complex Programs with Cost Equations. In
Programming Languages and Systems, Jacques Garrigue (Ed.). Springer International Publishing, Cham, 275-295.

Pierre Ganty, Rupak Majumdar, and Benjamin Monmege. 2010. Bounded Underapproximations. In Computer Aided
Verification, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 600-614.

Ronald Garcia, Eric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations of typestate-oriented programming. ACM
Transactions on Programming Languages and Systems (TOPLAS) 36, 4 (2014), 12.

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. 2010. Compositional May-must Program Analysis:
Unleashing the Power of Alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’10). ACM, New York, NY, USA, 43-56. https://doi.org/10.1145/1706299.1706307

Sergey Grebenshchikov, Ashutosh Gupta, Nuno P Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. HSF (C): A
software verifier based on Horn clauses. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 549-551.

Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and Sriram K. Rajamani. 2006. SYNERGY: A New
Algorithm for Property Checking. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT *06/FSE-14). ACM, New York, NY, USA, 117-127. https://doi.org/10.1145/1181775.1181790

Sumit Gulwani, Sagar Jain, and Eric Koskinen. 2009. Control-flow Refinement and Progress Invariants for Bound Analysis.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI "09).
ACM, New York, NY, USA, 375-385. https://doi.org/10.1145/1542476.1542518

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. 2015. The SeaHorn verification framework. In
International Conference on Computer Aided Verification. Springer, 343-361.

Michael A Harrison, Ivan M Havel, and Amiram Yehudai. 1979. On equivalence of grammars through transformation trees.
Theoretical Computer Science 9, 2 (1979), 173-205.

Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong Li, Alexander Nutz, Betim
Musa, Christian Schilling, Tanja Schindler, et al. 2018. Ultimate Automizer and the Search for Perfect Interpolants. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 447-451.

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2010. Nested interpolants. In Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010,
Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 471-482. https://doi.org/10.1145/1706299.1706353

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2013. Software Model Checking for People Who Love
Automata. In Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings (Lecture Notes in Computer Science), Natasha Sharygina and Helmut Veith (Eds.), Vol. 8044. Springer,
36-52. https://doi.org/10.1007/978-3-642-39799-8_2

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. 2004a. Abstractions from Proofs. In
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL °04). ACM,
New York, NY, USA, 232-244. https://doi.org/10.1145/964001.964021

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

https://doi.org/10.1145/3290358
https://doi.org/10.1145/1082983.1083249
https://doi.org/10.1145/1082983.1083249
https://developer.android.com/guide/components/activities/activity-lifecycle
https://arxiv.org/abs/cs.PL/2010.09652
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/964001.964021

Verifying Correct Usage of Context-Free API Protocols 17:29

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L McMillan. 2004b. Abstractions from proofs. In ACM
SIGPLAN Notices, Vol. 39. ACM, 232-244.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2002. Lazy Abstraction. In Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’02). ACM, New York, NY, USA,
58-70. https://doi.org/10.1145/503272.503279

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003. Software verification with BLAST. In
International SPIN Workshop on Model Checking of Software. Springer, 235-239.

John E Hopcroft. 2008. Introduction to automata theory, languages, and computation. Pearson Education India.

Graham Hughes and Tevfik Bultan. 2008. Interface grammars for modular software model checking. IEEE Transactions on
Software Engineering 34, 5 (2008), 614-632.

Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. 2012. JavaMOP: Efficient parametric runtime
monitoring framework. In Proceedings of the 34th International Conference on Software Engineering. IEEE Press, 1427-1430.

Pallavi Joshi and Koushik Sen. 2008. Predictive typestate checking of multithreaded java programs. In Proceedings of the
2008 23rd IEEE/ACM international conference on automated software engineering. IEEE Computer Society, 288-296.

Temesghen Kahsai, Philipp Rimmer, Huascar Sanchez, and Martin Schaf. 2016. JayHorn: A Framework for Verifying Java
programs. In Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing,
Cham, 352-358.

Allen] Korenjak and John E Hopcroft. 1966. Simple deterministic languages. In 7th Annual Symposium on Switching and
Automata Theory (swat 1966). IEEE, 36-46.

Patrick Lam, Viktor Kuncak, and Martin Rinard. 2004. Generalized typestate checking using set interfaces and pluggable
analyses. ACM SIGPLAN Notices 39, 3 (2004), 46-55.

Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast Graph Simplification for Interleaved Dyck-Reachability. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020). Association for
Computing Machinery, New York, NY, USA, 780-793. https://doi.org/10.1145/3385412.3386021

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondfej Lhotak, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z.
Guyer, Uday P. Khedker, Anders Mgller, and Dimitrios Vardoulakis. 2015. In Defense of Soundiness: A Manifesto.
Commun. ACM 58, 2 (Jan. 2015), 44-46. https://doi.org/10.1145/2644805

Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. 2012. Language-Theoretic Abstraction Refinement. In
Fundamental Approaches to Software Engineering, Juan de Lara and Andrea Zisman (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 362-376.

Ravichandhran Madhavan, Mikaél Mayer, Sumit Gulwani, and Viktor Kuncak. 2015. Automating grammar comparison. In
Acm Sigplan Notices, Vol. 50. ACM, 183-200.

Michael Martin, Benjamin Livshits, and Monica S. Lam. 2005. Finding Application Errors and Security Flaws Using PQL: A
Program Query Language. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA °05). ACM, New York, NY, USA, 365-383. https://doi.org/10.1145/1094811.
1094840

Kenneth L McMillan. 2005. Applications of Craig interpolants in model checking. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 1-12.

Kenneth L McMillan. 2006. Lazy abstraction with interpolants. In International Conference on Computer Aided Verification.
Springer, 123-136.

Patrick O’Neil Meredith, Dongyun Jin, Feng Chen, and Grigore Rosu. 2010. Efficient monitoring of parametric context-free
patterns. Automated Software Engineering 17, 2 (2010), 149-180.

Tmima Olshansky and Amir Pnueli. 1977. A direct algorithm for checking equivalence of LL (k) grammars. Theoretical
Computer Science 4, 3 (1977), 321-349.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R Gross. 2012a. Statically checking API protocol conformance
with mined multi-object specifications. In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 925-935.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R Gross. 2012b. Statically checking API protocol conformance
with mined multi-object specifications. In 2012 34th International Conference on Software Engineering (ICSE). IEEE,
925-935.

Thomas Reps. 2000. Undecidability of context-sensitive data-dependence analysis. ACM Transactions on Programming
Languages and Systems (TOPLAS) 22, 1 (2000), 162-186.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 49-61.

Johannes Spath, Karim Ali, and Eric Bodden. 2019. Context-, Flow-, and Field-sensitive Data-flow Analysis Using
Synchronized Pushdown Systems. Proc. ACM Program. Lang. 3, POPL, Article 48 (Jan. 2019), 29 pages. https:
//doi.org/10.1145/3290361

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/2644805
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1145/1094811.1094840
https://doi.org/10.1145/3290361
https://doi.org/10.1145/3290361

17:30 Kostas Ferles, Jon Stephens, and Isil Dillig

Manu Sridharan and Rastislav Bodik. 2006. Refinement-based context-sensitive points-to analysis for Java. In ACM SIGPLAN
Notices, Vol. 41. ACM, 387-400.

Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin Slicing. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI °07). Association for Computing Machinery, New York, NY,
USA, 112-122. https://doi.org/10.1145/1250734.1250748

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodik. 2005. Demand-driven points-to analysis for Java. In ACM
SIGPLAN Notices, Vol. 40. ACM, 59-76.

Robert E Strom and Shaula Yemini. 1986. Typestate: A programming language concept for enhancing software reliability.
IEEE Transactions on Software Engineering 1 (1986), 157-171.

Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. 2015. Summary-Based Context-Sensitive
Data-Dependence Analysis in Presence of Callbacks. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’15). Association for Computing Machinery, New York, NY, USA, 83-95.
https://doi.org/10.1145/2676726.2676997

Aditya Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll, Matt Elder, Tycho Andersen, and Thomas Reps.
2010. Directed Proof Generation for Machine Code. In Proceedings of the 22Nd International Conference on Computer
Aided Verification (CAV’10). Springer-Verlag, Berlin, Heidelberg, 288-305. https://doi.org/10.1007/978-3-642-14295-6_27

S. L. Torre, P. Madhusudan, and G. Parlato. 2007. A Robust Class of Context-Sensitive Languages. In 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007). 161-170. https://doi.org/10.1109/LICS.2007.9

Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. 2013. On Multi-stack Visibly Pushdown Languages.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot-a Java bytecode
optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative research.
IBM Press, 13.

Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on Software Engineering (ICSE ’81).
IEEE Press, 439-449.

Guogqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-reachability-based points-to analysis using context-
sensitive must-not-alias analysis. In European Conference on Object-Oriented Programming. Springer, 98-122.

Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong. 2018. Symbolic verification of regular properties. In
Proceedings of the 40th International Conference on Software Engineering. ACM, 871-881.

Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms for Dyck-CFL-reachability with applications
to alias analysis. In ACM SIGPLAN Notices, Vol. 48. ACM, 435-446.

Qirun Zhang and Zhendong Su. 2017. Context-Sensitive Data-Dependence Analysis via Linear Conjunctive Language
Reachability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 344-358. https://doi.org/10.1145/3009837.3009848

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 17. Publication date: January 2021.

https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1007/978-3-642-14295-6_27
https://doi.org/10.1109/LICS.2007.9
https://doi.org/10.1145/3009837.3009848

	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Statement
	3.1 Input Language
	3.2 Context-Free API Protocols
	3.3 Semantic Conformance to API Protocol

	4 Program Instrumentation
	5 Verification Algorithm
	5.1 Predicated Control-Flow Automata
	5.2 Main Algorithm
	5.3 PCFA Refinement
	5.4 Context-Free Grammar Construction

	6 Implementation
	7 Evaluation
	7.1 API Specifications & Benchmarks
	7.2 Results for CFPChecker
	7.3 Comparison with Baselines

	8 Related Work
	9 Conclusion
	References

