
A Datalog Model of Must-Alias Analysis

George Balatsouras1 Kostas Ferles2 George Kastrinis1 Yannis Smaragdakis1

1University of Athens, Greece, 2University of Texas at Austin, USA

Abstract
We give a declarative model of a rich family of must-alias
analyses. Our emphasis is on careful and compact modeling,
while exposing the key points where the algorithm can adjust
its inference power. The model is executable, in the Datalog
language, and forms the basis of a full-fledged must-alias
analysis of Java bytecode in the DOOP framework.

CCS Concepts •Theory of computation → Program
analysis

Keywords Alias analysis, Datalog, must analysis

1. Introduction
Pointer analysis is the backbone of many realistic static anal-
yses, as it offers a scalable way to model heap behavior.
Pointer analysis typically comes in two flavors: alias anal-
ysis, which computes program expressions that may alias,
i.e., refer to the same heap object, and points-to analysis,
which computes the heap objects that program variables and
expressions may refer to.

A must-alias (or definite-alias) analysis computes alias
relationships (between program expressions) that are guar-
anteed to always hold during program execution. The analy-
sis is typically flow-sensitive, i.e., it computes information
per-program-point, respecting the control-flow of the pro-
gram. A must-alias analysis has several applications:

• it is useful for optimizations—e.g., constant folding, com-
mon subexpression elimination, and register allocation;

• it can increase the precision of bug detectors: Nikolić
and Spoto [12] report that a must-alias analysis signifi-
cantly increases the precision of both a null-reference de-
tector (46% fewer warnings) and a non-termination detec-
tor (11% fewer warnings). Earlier work has reported simi-
lar benefits [9];

• it can be used as an internal component as part of a more
complex analysis. For instance, must-alias results may en-
able an analysis to perform “strong updates” at instruc-

tions that modify the heap. Earlier work has used must-
alias analysis to similar benefit [4, 7].

To illustrate must-alias reasoning, consider the code be-
low. In this example, a2.next and a1 form an alias pair
after line 8. (Other alias pairs include a1.next and null

after line 7, a2.next.next and a2 after line 11, and more.)
Alias pairs are established via direct variable assignments,
calls, as well as heap stores and loads. A must-alias analysis
has to report aliases only when they are guaranteed to hold,
and needs to invalidate them on store instructions or method
calls that may change the fields of objects pointed by subex-
pressions in an alias pair.

1 class Node {
2 Node next;
3 Node(Node next) { this.next = next; }
4 void wrap() { next.next = this; }
5 }
6 void main() {
7 Node a1 = new Node(null);
8 Node a2 = new Node(a1);
9 Node a3 = new Node(null);

10 a1.next = a3;
11 a2.wrap();
12 }

For instance, line 10 invalidates the alias pair a1.next
and null. However, the analysis is sound (i.e., it remains
a must-analysis) if it also invalidates alias pairs for expres-
sions involving a2.next or a3.next. The base specifica-
tion of a must-alias analysis has to integrate such soundness
safeguards, while interplay with other analyses (e.g., a may-
not-alias analysis) can lead to more inferences.

In this work, we present a simple declarative model of a
must-alias analysis over access paths (i.e., expressions of the
form “var(.fld)*”). The model underlies the implementation
of must-alias analysis in the DOOP framework [2], which
expresses several analyses of Java bytecode using Datalog
specifications. DOOP employs must-alias analysis as an en-
hancer of its standard array of may-analyses—e.g., in order
to enable “strong updates”.

The model is interesting in a few different ways:

• It is an instance of a flow-sensitive analysis in Datalog.
As such, it introduces idioms and patterns also used in a
multitude of other (current or future) analyses in DOOP.

• The analysis is minimal, yet models the core features of
a general must-alias analysis in a handful of declarative
rules. In this way, the analysis semantics are easily under-

stood and can be further enhanced. The rules allow con-
figurability and employ several techniques for conciseness
and power. The use of context, in particular, is crucial: the
analysis introduces context variables, much like in tradi-
tional may analyses (e.g., [8, 16]), yet uses the context
highly unconventionally. Context is used as “fuel”, to guar-
antee the “must” nature of the analysis: must-alias infer-
ences are propagated inter-procedurally, with context ex-
tended for every call. When maximum context depth is
reached, inferences cannot propagate any further.

• The analysis gives rise to several observations, concerning
the representation of equivalence relations in a Datalog
engine, and the need for implicit encodings of aliasing.

2. Must-Alias Analysis Model
We next present a minimal Datalog model of an inter-
procedural must-alias analysis algorithm on a static-single
assignment (SSA) intermediate language.

2.1 Intermediate Language / Analysis Schema
The language can be enhanced with features such as arrays,
static members and calls, exceptions, etc. to be a full-fledged
intermediate language. Indeed, our actual analysis imple-
mentation is on the Jimple intermediate language of the Soot
framework [18],which models all features of Java bytecode.
Yet the core of the analysis is represented well in the mini-
mal language.

Figure 1 shows the domain of the analysis (i.e., the differ-
ent value sets that constitute the space of our computation)
and three different groups of relations.

Input Relations. The input relations correspond to our in-
termediate language features. They are logically grouped
into relations that represent instructions and relations that
represent name-and-type information. In particular, the PHI
relation captures φ instructions, for the SSA form of our in-
termediate language. The NEXT relation expresses directed
edges in the control-flow graph (CFG): NEXT(i,j) means that
i is a CFG predecessor of j.

Similarly, there are relations that encode type sys-
tem, symbol table, and program environment information—
e.g., FORMALARG, ACTUALARG, FORMALRET, THIS-
VAR. The input intermediate language program is assumed
to be in a single-return form, for each method. LOOKUP
matches a method signature to the actual method definition
inside a type. INMETHOD is a function from instructions to
their containing methods. RESOLVED is a predicate that can
be computed by an external call-graph or may-point-to anal-
ysis: it holds variables that are determined to only point to
objects with a unique dynamic type, so that virtual method
calls are resolved. (Note that the form of the predicate is
context-insensitive, yet the analysis that computes it may be
context-sensitive, for increased precision—the contexts are
merely projected out.) Finally, ROOTMETHOD is a predi-

V : program variables M : method identifiers
S: method signatures F : fields
I: instructions T : types
C: contexts N: natural numbers

A: access paths of the form V (.F)∗
MOVE(i: I, to: V, from: V) # i: to = from
LOAD(i: I, to: V, base: V, fld: F) # i: to = base.fld
STORE(i: I, base: V, fld: F, from: V) # i: base.fld = from
CALL(i: I, base: V, sig: S) # i: base.sig(..)
PHI(i: I, to: V, from1: V, . . .) # i: to = φ(from1, . . .)
NEXT(i: I, j: I) # j is CFG successor of i

FORMALARG(meth: M, n: N, arg: V)
ACTUALARG(invo: I, n: N, arg: V)
FORMALRET(instr: I, meth: M, ret: V)
THISVAR(meth: M, this: V)
LOOKUP(type: T, sig: S, meth: M)
INMETHOD(instr: I, meth: M)
RESOLVED(var: V, type: T)
ROOTMETHOD(meth: M)
MUSTALIAS(inst: I, ctx: C, ap1: A, ap2: A)
MUSTCALLGRAPHEDGE(invo: I, ctx: C, toMth: M, toCtx: C)
REACHABLE(ctx: C, meth: M)
AP(access path expression) = ap: A
PRIMEAP(ap: A) = newAp: A
UNPRIMEAP(ap: A) = newAp: A
NEWCONTEXT(invo: I, ctx: C) = newCtx: C

Figure 1: Our domain, input relations (MOVE, ...), com-
puted relations (MUSTALIAS, ...), and constructors (AP, ...).

cate over methods, used to start must-alias reasoning from a
user-selected set of methods.

Computed Relations. Figure 1 also shows the computed
relations of our must-alias analysis. The first relation,
MUSTALIAS, is also the main output of the analysis. The
relation is defined on access paths, i.e., expressions of the
form “var(.fld)*”. The meaning of MUSTALIAS(i, ctx, ap1,
ap2) is that access path ap1 aliases access path ap2 (i.e., they
are guaranteed to point to the same heap object, or to both
be null) right after program instruction i, executed under
context ctx, provided that the instruction is indeed executed
under ctx at program run-time. The two access paths are said
to form an alias pair.

Other computed relations represent intermediate results
of the analysis. MUSTCALLGRAPHEDGE holds information
for fully-resolved virtual calls: invocation site invo will call
method toMth under the given contexts. REACHABLE com-
putes which methods and under what context are of interest
to the must-alias analysis.

Constructors. We assume a constructor function AP that
produces access paths. For instance, inside a logic program,
“AP(var.fld1.fld2) = ap” means that the access path ap has
length 3 and its elements are given by the values of bound

logical variables var, fld1 and fld2. We also manipulate access
paths with two functions PRIMEAP and UNPRIMEAP.
PRIMEAP takes an access path and returns a new one by
“priming” the base variable of the original. UNPRIMEAP
reverses this mapping. For instance, PRIMEAP(“v.fld”) =
“v’.fld”. UNPRIMEAP only applies to access paths with
primed variables as their base—otherwise the rule fails to
match. Priming and unpriming of access paths is done at
method call and return sites, to mark access paths that ar-
rive from callers. This is necessary for avoiding confusion
of variables in recursive calls.

Similarly, we construct new contexts using function
NEWCONTEXT. The definition of this constructor serves to
configure the analysis for different context settings, as dis-
cussed later. If NEWCONTEXT does not return a value (e.g.,
because the maximum context depth has been reached),
the current rule employing the constructor will not produce
facts. The constant ALL is used to signify the initial context.

We shall also use AP as a pattern matcher over access
paths. For instance, the expression “AP(.fld) = ap” binds
the value of logical variable fld to the last field of access path
ap. (is an anonymous variable that can match any value.)

Constructors of access paths and contexts are much like
other relations. In practical analyses, the space of access
paths and contexts is made finite, by bounding their length.

2.2 Analysis Model
Figure 2 shows our analysis model, in four groups of rules.
For conciseness, we have employed some syntactic sugar:

• In addition to conjunction (signified by the usual “,” in
a rule body) our rules also employ disjunction (“;”) and
negation (“!”). Negation is stratified: it is only applied to
predicates that are either input predicates or whose com-
putation can complete before the current rule’s evaluation.
We also permit multiple predicates in a rule head, as syn-
tactic sugar for replicating the rule body.

• We use the shorthand P* for the reflexive, symmetric,
transitive closure of relation P, which is assumed to be bi-
nary. For larger arities, underscore () variables are used
to distinguish variables of a relation that are affected by
the closure rule. Specifically, MUSTALIAS*(i, ctx, ,) de-
notes the reflexive, symmetric, transitive closure of relation
MUSTALIAS with respect to its last two variables.

• We introduce ∀: syntactic sugar that hides a Datalog pat-
tern for enumerating all members of a set and ensuring that
a condition holds universally.1 An expression “∀i: P(i)→
Q(i,...)” is true if Q(i,...) holds for all i such that P(i) holds.
Such an expression can be used in a rule body, as a condi-
tion for the rule’s firing. Multiple variables can be quanti-
fied by a ∀. Variables not bound by ∀ remain implicitly ex-

1 Emulating universal quantification in Datalog requires ordered domains.
An arbitrary ordering relation (e.g., by internal id of facts as assigned by
the implementation) can be imposed on all our domains.

istentially quantified, as in conventional Datalog. However,
the existential quantifier is interpreted as being outside the
universal one. For instance, “∀i,j: P(i,j,k) → Q(i,j,k,l)” is
interpreted as “there exist k,l such that for all i,j ...”.

Base Rules. The top part of Figure 2 lists six rules: one to
initialize interesting analysis contexts and five for must-alias
inferences. The former rule employs configuration predicate
ROOTMETHOD. This predicate designates methods that are
to be analyzed unconditionally: the inference is made under
the special context value ALL. For a non-root method, alias-
ing inferences can only be made under a specific context, for
which the method has been computed to be reachable.

The next four MUSTALIAS rules handle one instruction
kind each: MOVE, PHI, LOAD, and STORE. The MOVE
rule merely establishes an aliasing relationship between the
two assigned variables, at the point of the move instruction.
The PHI rule promotes aliasing relationships that hold for
all the right-hand sides of a φ instruction to its left hand
side. The LOAD and STORE rules establish aliases between
the loaded/stored expression, base.fld, and the local variable
used. The last MUSTALIAS rule makes the MUSTALIAS
relation symmetrically and transitively closed.

Inter-Procedural Propagation Rules. The second part
of Figure 2 presents four rules responsible for the inter-
procedural propagation of access path aliasing.

The first rule continues the handling of program instruc-
tions with a treatment of CALL. At a CALL instruction, for
method signature sig over object base, if base has a unique
(resolved) type, then the method is looked up in that type, a
MUSTCALLGRAPHEDGE is inferred from the invocation in-
struction to the target method and the method is also marked
as REACHABLE with a callee context computed using con-
structor NEWCONTEXT. Recall that the NEWCONTEXT
function may fail to return a new context (e.g., because ctx
has already reached the maximum depth and toCtx would ex-
ceed it) in which case the rule will not infer new facts.

The other three rules handle aliasing induced at a method
invocation site. Despite their rather daunting form, the rules
are quite straightforward. The first states that, at the first
instruction of a called method, the formal and actual argu-
ments are aliased. In combination with other rules (discussed
next, under “Access Path Extension”) this is sufficient for
transferring all alias pairs from the caller to the callee! The
actual argument is “primed” appropriately, to mark that it
is received from a caller. For instance, if the analyzed pro-
gram contains a call “foo(x)” to a method defined as “void
foo(Object y)”, the rule will simply infer that x’ and y

are aliased. The rule infers the same aliasing for the base
variable of the method call and the pseudo-variable this

inside the receiver method. (Note how the first instruction
of the called method is computed as the only instruction in
the method that has no CFG predecessors: ∀k→ !NEXT(k,
firstInstr). This convention is assumed to hold for our input
intermediate language.)

REACHABLE(ctx,m)← ROOTMETHOD(m), ctx = ALL.

MUSTALIAS(i, ctx, AP(from), AP(to))←
MOVE(i, to, from), INMETHOD(i, m), REACHABLE(ctx,m).

MUSTALIAS(i, ctx, ap, AP(to))←
(∀from: PHI(i, to, . . . , from, . . .)→

MUSTALIAS(i, ctx, AP(from), ap)),
INMETHOD(i, m), REACHABLE(ctx,m).

MUSTALIAS(i, ctx, AP(to), AP(base.fld))←
LOAD(i, to, base, fld),
INMETHOD(i, m), REACHABLE(ctx,m).

MUSTALIAS(i, ctx, AP(from), AP(base.fld))←
STORE(i, base, fld, from),
INMETHOD(i, m), REACHABLE(ctx,m).

MUSTALIAS(i, ctx, ,)← MUSTALIAS*(i, ctx, ,).
MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx),
REACHABLE(toCtx, toMth)←

CALL(i, base, sig),
INMETHOD(i, m), REACHABLE(ctx,m),
RESOLVED(base, type), LOOKUP(type, sig, toMth),
NEWCONTEXT(i,ctx) = toCtx.

MUSTALIAS(firstInstr, toCtx, ap1, ap2)←
MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx),
INMETHOD(firstInstr, toMth), (∀k→ !NEXT(k, firstInstr)),
((FORMALARG(toMth, n, toVar), ACTUALARG(i, n, var));

(THISVAR(toMth, toVar), CALL(i, var,))),
PRIMEAP(AP(var)) = ap1, AP(toVar) = ap2.

MUSTALIAS(firstInstr, toCtx, ap1, ap2)←
MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx),
INMETHOD(firstInstr, toMth), (∀k→ !NEXT(k, firstInstr)),
(∀j: NEXT(j, i)→

MUSTALIAS(j, ctx, callerAp1, callerAp2)),
PRIMEAP(callerAp1) = ap1, PRIMEAP(callerAp2) = ap2.

MUSTALIAS(i, ctx, ap1, ap2)←
MUSTCALLGRAPHEDGE(i, ctx, toMth, toCtx),
FORMALRET(reti, toMth,),
(MUSTALIAS(reti, toCtx, calleeAp1, calleeAp2);

MUSTALIAS(reti, ALL, calleeAp1, calleeAp2)),
UNPRIMEAP(calleeAp1) = ap1,
UNPRIMEAP(calleeAp2) = ap2.

MUSTALIAS(i, ctx, ap3, ap4)←
MUSTALIAS(i, ctx, ap1, ap2),
AP(ap1.fld) = ap3, AP(ap2.fld) = ap4.

MUSTALIAS(i, ctx, ap1, ap2)←
!STORE(i, , ,), !CALL(i, ,),
(∀j: NEXT(j, i)→ MUSTALIAS(j, ctx, ap1, ap2)).

Figure 2: Datalog rules for a model must-alias analysis.

The third rule (again, in the second part of Figure 2)
similarly identifies the first instruction of a called method.
It then propagates to it all alias pairs that hold after all
predecessor instructions, j, of the calling instruction, i. The
base variables of the alias pairs are “primed”, as appropriate,
to denote that they come from the caller.

The fourth and final rule performs the inverse mapping
of access paths from a return instruction to the call site. For
alias pairs to propagate back (to the caller, with context ctx),
they need to hold either in the appropriate context (toCtx,
which matches ctx in the call graph), or unconditionally,
i.e., with context ALL. Access paths are “unprimed” when
propagating to the caller. Note that this implies that local
alias pairs (e.g., among local variables of the callee) do not
propagate to the caller.

Crucially, the handling of a method return is the only
point where a context can become stronger. MUSTALIAS
facts that were inferred to hold under the more specific toCtx
are now established, modulo unpriming, under ctx.

Access Path Extension. The next-to-last rule group of Fig-
ure 2 contains a straightforward, yet essential, rule. This rule
allows access path extension: if two access paths alias, ex-
tending them by the same field suffix also produces aliases.
It is important to note that the constructor AP is not used in
the head of the rule, thus the extended access paths are not
generated but assumed to exist. Therefore, the rule does not
spur infinite creation of access paths.

This powerful rule is responsible for much of the simplic-
ity of our must-alias analysis specification. For instance, re-
call how earlier we handled the mapping of actual to formal
method arguments quite simply: we merely added an alias
between the (primed) actual argument variable and the for-
mal argument. It is the access path extension rule that takes
care of also generalizing this mapping to longer access paths
whose base variable is the actual argument of the call.

Frame Rules: From One Instruction To The Next. The
rule in the bottom part of Figure 2 determines how must-alias
facts can propagate from one instruction to its successors.
The rule simply states that all aliases are propagated if the
instruction is not a store or a call. (Because of SSA, access
paths cannot be invalidated via move instructions.)

Comments. The model we just presented is carefully de-
signed to encompass a minimal, highly-compact but usefully
representative must-alias analysis. There are several exten-
sions that can apply, but all of them are analogous to fea-
tures shown. For instance, we are missing a rule for propa-
gating back to the caller complex access paths (i.e., of length
greater than 1) that are based on the formal return variable.
Similarly, store or call instructions do not invalidate aliasing
between local variables—an extra rule could allow further
propagation. Furthermore, it is not always necessary for an
alias pair to hold in all predecessors: it could hold in one and
others may be dominated by the instruction and not invali-

date the alias pair. Our actual implementation contains the
handling of such cases, but these complexities do not affect
the discussion of our model.

3. Discussion
There are several parts of the model and its implementation
that are worth emphasizing.

Context-Sensitivity in Must-Alias. The use of context in
our must-alias analysis is subtle. Context in a pointer analy-
sis is used to distinguish different dynamic execution flows
when analyzing a method. That is, the same method gets
analyzed once per each applicable context, under different
information. The context effectively encodes different sce-
narios under which the method gets called, allowing more
faithful analysis in the specialized setting of the context.

Our analysis model of Section 2 employs context to trans-
mit alias pairs from a caller to a callee, yet qualify them with
the context identifier to which they pertain. This enables pro-
ducing more alias pairs, however, their validity is conditional
on the context used. Generally, the use of a deeper context
in a must-analysis can extend its reach, allowing more infer-
ences, i.e., a larger result, whereas deeper context in a may-
analysis it results in more precision, i.e., a smaller result.

What can our context be, however? In typical context-
sensitive pointer analyses in the literature, a variety of con-
text creation functions can be employed. There are context
flavors such as call-site sensitivity [14, 15], object sensitivity
[10, 11], or type sensitivity [17]. Our NEWCONTEXT con-
structor (employed at method calls) could be set appropri-
ately to produce such context variety. However, the current
form of our rules restricts our options to call-site sensitivity,
with potential extra information adding to, but not replac-
ing, call sites. The signature of constructor NEWCONTEXT
is NEWCONTEXT(invo: I, ctx: C) = newCtx: C. The assump-
tion is that the new context produced uniquely identifies both
invocation site invo and its context, ctx. Effectively, if NEW-
CONTEXT produces a newCtx at all, it can do little other than
push invo onto ctx and return the result.

The analysis then propagates MUSTALIAS pairs from
(all predecessors of) call site invo under context ctx to the
first instruction of a called method, toMth, under context
newCtx. Thus, newCtx should be enough to establish that
these inferences must hold. There is no room for conflating
information from multiple execution paths (i.e., callers and
calling contexts).2

The requirement that NEWCONTEXT(invo,ctx) produce
contexts that uniquely identify both invo and ctx means that
context can only grow from an original source in our anal-
ysis. Consider a set of three methods, meth1, meth2, and
meth3, each calling the next. If we allow NEWCONTEXT
to produce contexts that are stacks of invocation sites, i, each

2 One could imagine doing so under the premise that all such calling con-
texts agree on the aliases they establish at the beginning of the callee func-
tion. However, this is unlikely to arise often in practice.

starting with ALL and growing up to depth 2, then starting
from meth1 we will propagate its aliases to meth2, which
will propagate the resulting combined aliases to meth3. The
propagation will stop there, i.e., the aliases of meth1 cannot
influence inferences for callees of meth3. However, meth3
(assuming it is included in the root methods) will itself also
be analyzed with a context of ALL, allowing its own aliases
(independently derived from those of meth1 or meth2) to
be a source of a similar propagation.

Representation of Equivalence Classes. MUSTALIAS en-
codes equivalence classes on access paths. Datalog inher-
ently has no such notion and any attempt to compute a must-
alias relation has to explicitly encode all aliasing pairs. E.g.,
if variable v1 is an alias for variable v2, and v2 of variable
v3, we have to explicitly record the following pairs: v1 and
v2, v2 and v1, v2 and v3, v3 and v2, v1 and v3, v3 and v1.
This effect is exacerbated for longer access paths.

In theory, this redundancy will greatly hinder perfor-
mance. In practice, it is often affordable because of keep-
ing access paths short and computing must-alias informa-
tion where needed. The analysis is fully modular and can
be applied to any subset of the program code. Still, future
work should address this shortcoming in the general setting
of Datalog computation of equivalence relations.

4. Related Work
There are several approaches in the literature that present
must-analyses in the pointer analysis setting or employ them
in a may-analysis. Our approach is a must-alias analysis
applied to Java bytecode, but conceptually it is distinguished
by its minimizing the distance between the implementation
and the declarative specification.

Nikolić and Spoto [12] present a must-alias analysis that
tracks aliases between program expressions and local vari-
ables (or stack locations, since they analyze Java bytecode).
The analysis is related to ours both because of its applica-
tion to Java bytecode and because it is constraint-based: the
analysis is a generator of constraints, which are subsequently
solved to produce the analysis results.

Hind et al. [6] present a collection of pointer analysis
algorithms. Among them, the most relevant to this work is
a flow-sensitive interprocedural pointer alias analysis. The
authors optimistically produce must information for pointers
to single non-summary objects.

Emami et al. [4] present an approach that simultaneously
calculates both must- and may-point-to information for a C
analysis. Their empirical results “show the existence of a
substantial number of definite points-to relationships, which
forms very valuable information”—much in line with our
own experience.

Must- information is often computed in conjunction with
a client analysis. One of the best examples is the typestate
verification of Fink et al. [5], which demonstrates the value
of a must-analysis and the techniques that enable it.

The analysis of [3] is essentially a flow-sensitive may-
point-to analysis that performs strong updates, as it maps
access paths to heap objects (abstracted by their allocation
sites). The approach uses a flow-insensitive may-point-to
analysis to bootstrap the main analysis. However, it provides
no definite knowledge of any sort, since the aim is to increase
the precision of the may-analysis. For instance, even if an ac-
cess path points to a single heap object, according to the De
and D’Souza analysis, there is no must point-to information
derived, since this object could be a summary object (i.e.,
one that abstracts many objects allocated at the same allo-
cation site). To reason about such cases, other approaches,
such as the more expensive shape analysis algorithms [13],
additionally maintain summary information per heap object.
In this way, they allow must point-to edges to exist only if
the target is definitely not a summary node.

Generally, must-analyses can vary greatly in sophistica-
tion and can be employed in an array of different combina-
tions with may-analyses. The analysis of Balakrishnan and
Reps [1], which introduces the recency abstraction, distin-
guishes between the most recently allocated object at an al-
location site (a concrete object, allowing strong updates) and
earlier-allocated objects (represented as a summary node).
The analysis additionally keeps information on the size of
the set of objects represented by a summary node. At the
extreme, one can find full-blown shape analysis approaches,
such as that of Sagiv et al. [13], which explicitly maintains
must- and may- information simultaneously, by means of
three-valued truth values, in full detail up to predicate ab-
straction: a relationship can definitely hold (“must”), defi-
nitely not hold (“must not”, i.e., negation of “may”), or pos-
sibly hold (“may”). Summary and concrete nodes are again
used to represent knowledge, albeit in full detail, as captured
by arbitrary predicates whose value is maintained across pro-
gram statements, at the cost of a super-exponential worst-
case complexity.

Acknowledgments
We gratefully acknowledge funding by the European Re-
search Council, grant 307334 (SPADE).

References
[1] G. Balakrishnan and T. W. Reps. Recency-abstraction for

heap-allocated storage. In Proc. of the 14th International
Symp. on Static Analysis, SAS ’06, pages 221–239. Springer,
2006.

[2] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Proc. of the
24th Annual ACM SIGPLAN Conf. on Object Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
’09, New York, NY, USA, 2009. ACM.

[3] A. De and D. D’Souza. Scalable flow-sensitive pointer
analysis for java with strong updates. In Proceedings of
the 26th European Conference on Object-Oriented Program-
ming, ECOOP’12, pages 665–687, Berlin, Heidelberg, 2012.
Springer-Verlag.

[4] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In Proc. of the 1994 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI
’94, pages 242–256, New York, NY, USA, 1994. ACM.

[5] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing. In
International Symposium on Software Testing and Analysis
(ISSTA), pages 133–144, New York, NY, USA, 2006. ACM.

[6] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural
pointer alias analysis. ACM Trans. Program. Lang. Syst.,
21(4):848–894, July 1999.

[7] S. Jagannathan, P. Thiemann, S. Weeks, and A. Wright. Single
and loving it: Must-alias analysis for higher-order languages.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’98,
pages 329–341, New York, NY, USA, 1998. ACM.

[8] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Proc. of the 2013 ACM SIGPLAN
Conf. on Programming Language Design and Implementa-
tion, PLDI ’13, New York, NY, USA, 2013. ACM.

[9] X. Ma, J. Wang, and W. Dong. Computing must and may
alias to detect null pointer dereference. In Proc. of the 3rd
International Symp. On Leveraging Applications of Formal
Methods, Verification and Validation, volume 17 of ISoLA
’08, pages 252–261. Springer, 2008.

[10] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In Proc. of the 2002 International Symp. on Software
Testing and Analysis, ISSTA ’02, pages 1–11, New York, NY,
USA, 2002. ACM.

[11] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans.
Softw. Eng. Methodol., 14(1):1–41, 2005.

[12] D. Nikolić and F. Spoto. Definite expression aliasing analysis
for Java bytecode. In Proc. of the 9th International Collo-
quium on Theoretical Aspects of Computing, volume 7521 of
ICTAC ’12, pages 74–89. Springer, 2012.

[13] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems, 24(3):217–298, May 2002.

[14] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. In S. S. Muchnick and N. D. Jones, editors,
Program flow analysis: theory and applications, chapter 7,
pages 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1981.

[15] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, may 1991.

[16] Y. Smaragdakis and G. Balatsouras. Pointer analysis. Foun-
dations and Trends in Programming Languages, 2(1):1–69,
2015.

[17] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: Understanding object-sensitivity. In Proc. of
the 38th ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages, POPL ’11, pages 17–30, New York,
NY, USA, 2011. ACM.

[18] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java bytecode optimization
framework. In Proc. of the 1999 Conf. of the Centre for
Advanced Studies on Collaborative research, CASCON ’99,
pages 125–135. IBM Press, 1999.

	Introduction
	Must-Alias Analysis Model
	Intermediate Language / Analysis Schema
	Analysis Model

	Discussion
	Related Work

